第一章 数 列
(120分钟 150分)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.如果数列{an}的前n项和为Sn=(3n-2n),那么这个数列( )
(A)是等差数列而不是等比数列
(B)是等比数列而不是等差数列
(C)既是等差数列又是等比数列
(D)既不是等差数列又不是等比数列
2.在等比数列{an}中,已知a1=,an=,q=,则n为( )
(A)2 (B)3 (C)4 (D)5
3.等差数列{an}、{bn}的前n项和分别为Sn与Tn,若=,则=( )
(A)1 (B)
(C) (D)
4.(2011·衢州高二检测)设{an}是公差为-2的等差数列,若a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99等于( )
(A)82 (B)-82 (C)132 (D)-132
5.若a、b、c成等比数列,则函数y=ax2+bx+c与x轴的交点的个数为( )
(A)0 (B)1
(C)2 (D)不能确定
6.在3和9之间插入两个正数,使前三个成等比数列,后三个成等差数列,则这两个数的和是( )
(A) (B) (C) (D)9
7.(2011·温州高二检测)在等差数列{an}中,a10<0,a11>0,且a11>|a10|,Sn为前n项的和,则( )
(A)S1,S2,S3,…,S10都小于零,S11,S12,S13,…都大于零
(B)S1,S2,…,S19都小于零,S20,S21,…都大于零
(C)S1,S2,…,S5都大于零, S6,S7,…都小于零
(D)S1,S2,…,S20都大于零,S21,S22,…都小于零
8.等差数列{an}的前n项和为Sn,若a3+a17=10,则S19=( )
(A)190 (B)95 (C)170 (D)85
9.在等差数列{an}中,满足3a4=7a7,a1>0,Sn是其前n项和,若Sn取最大值,则n等于( )
(A)7 (B)8 (C)9 (D)10
10.数列{an}中,an=,若前n项和Sn=9,则项数n等于( )
(A)96 (B)97 (C)98 (D)99
11.某厂原来总产值为a,以后连续两年每年平均以10%递增.若连续两年中第二年的生产总值为b,则a是b的( )
(A)80% (B)90.9% (C)82.6% (D)81%
12.(2011·青岛高二检测)设函数f(x)满足f(n+1)=(n∈N+),且f(1)=2,则f(20)为( )
(A)95 (B)97 (C)105 (D)192
二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)
13.已知数列前4项为4,6,8,10,则它的其中一个通项公式为________.
14.(2011·济宁高二检测)一个等比数列,它与一个首项为零,公差不为零的等差数列相应项相加以后得到新的数列1,1,2,…,则相加以后的新数列的前10项的和为________.
15.已知数列{an}的前n项的和Sn满足log2(Sn+1)=n,则an=________.
16.已知数列{an}中,an+1=,a7=,则a5=________.
三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)
17.(10分)已知数列{an}是一个等差数列,且a2=-1,a5=5.
(1)求{an}的通项an;
(2)求{an}前n项和Sn的最小值.
18.(12分)三个数成递增的等比数列,其和为78,若将其中最小数减去10,最大数减去14,则构成等差数列,求原来的三个数.
19.(12分)在等差数列{an}中,a10=23,a25=-22,
(1)数列{an}的前多少项和最大?
(2)求{|an|}的前n项和.
20.(12分)等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1且b2S2=64,b3S3=960.
(1)求an与bn;
(2)求和:.
21.(12分)(2011·临沂高二检测)已知数列{an}的各项均为正数,Sn为其前n项和,且对任意的n∈N+,有Sn=an-.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
22.(12分)某养鱼场据统计测算,第一年鱼的质量增长率为200%,以后每年的增长率均为前一年的一半.
(1)饲养五年后,鱼的质量预计是原来的多少倍?
(2)因死亡等原因,每年约损失预计质量的10%,那么经过几年后,鱼的总质量开始下降?
答案解析
1.【解析】选B.当n≥2时,an=Sn-Sn-1
=(3n-2n)-(3n-1-2n-1)
=-1-+1
=×=×()n,
a1=S1=,
∴数列{an}是等比数列而不是等差数列,故选B.
2.【解析】选C.在等比数列{an}中,
a1=,an=,q=.
∵an=a1qn-1=()n-1=,
∴()n-1=·=()3,
∴n-1=3,n=4.
3.【解析】选C.∵故选C.
4.【解析】选B.∵{an}是公差为-2的等差数列,
∴a3+a6+a9+…+a99
=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)
=a1+a4+a7+…+a97+33×2d=50-132=-82.
5.【解析】选A.∵a、b、c成等比数列,a、b、c均不为0,
∴ac=b2,又Δ=b2-4ac=b2-4b2=-3b2<0,
∴交点个数为0,故选A.
6.【解析】选A.设中间两数依次为x,y,
则x2=3y,2y=x+9;
解得,所以x+y=.
7.【解析】选B.∵a10<0,∴a1+9d<0.
∵a11>0,∴a1+10d>0.
又a11>|a10|,∴a1+10d>-a1-9d,
∴2a1+19d>0,
∴S19=19a1+d=19(a1+9d)<0,排除A和D.
S20=20a1+d=10(2a1+19d)>0,排除C.故选B.
8.独具【解题提示】解决本题的关键是能够想到等差数列的性质,然后写出等差数列的求和公式利用性质替换即可.
【解析】选B.根据等差数列的求和公式和等差数列的性质可知:
S19===95.
9.【解析】选C.由3a4=7a7,∴3(a1+3d)=7(a1+6d),
∴a1=-d.
又a1>0,公差d<0,∴该数列为单调递减数列,要使Sn取最大值
则即
解得≤n≤,故n=9,故选C.
10.【解析】选D.an=,得
Sn=-1=9?n=99.
11.【解析】选C.由b=a(1+10%)2=1.21a,
∴≈82.6%,故选C.
12.【解析】选B.f(n+1)=?f(n+1)-f(n)=,
∴f(20)-f(19)=,
f(19)-f(18)=9,
f(18)-f(17)=,
…
f(2)-f(1)=,以上式子相加得
f(20)-f(1)=+9++…+
=×=95.
∴f(20)=97,故选B.
13.独具【解题提示】观察数列的前4项的数之间的规律,找到一个统一的形式,根据数列的要求写出这个形式即是通项公式.
【解析】该数列的前4项分别可写成:
2×(1+1),2×(2+1),2×(3+1),2×(4+1),
所以数列的通项公式可为an=2(n+1).
答案:an=2(n+1)
14.【解析】设等比数列首项为a1,公比为q,等差数列首项为b1=0,公差为d.
由题得?
∴S10=(a1+a2+…+a10)+(b1+b2+…+b10)
=+10×0+×(-1)
=210-1-45=978.
答案:978
15.独具【解题提示】首先根据对数的运算性质,找到数列的前n项和公式的表达形式,然后通过已知前n项和求通项公式的方法求解.
【解析】由log2(Sn+1)=n得Sn+1=2n,∴Sn=2n-1,所以可得a1=S1=2-1=1,根据数列的性质:
n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-2n-1=2n-1;
n=1时满足an=2n-1
∴an=2n-1.
答案:2n-1
16.【解析】a7=,∴a5=1.
答案:1
17.【解析】(1)设{an}的公差为d,由已知条件,
,解出a1=-3,d=2.
所以an=a1+(n-1)d=2n-5.
(2)Sn=na1+d=n2-4n=(n-2)2-4.
所以n=2时,Sn取到最小值-4.
18.【解析】设三个数分别是a、aq、aq2,则依题意得解得a=6,q=3.
故原来的三个数为6,18,54.
19.【解析】(1)由得,
∴an=a1+(n-1)d=-3n+53,
令an>0,得:n<,
∴当n≤17,n∈N+时,an>0;当n≥18,n∈N+时,an<0
∴{an}的前17项和最大.
(2)当n≤17,n∈N+时
|a1|+|a2|+…+|an|=a1+a2+…+an=na1+d
=-n2+n
当n≥18,n∈N+时
|a1|+|a2|+…+|an|=a1+a2+…+a17-a18-a19-…-an
=2(a1+a2+…+a17)-(a1+a2+…+an)
=n2-n+884,
∴当n≤17,n∈N+时,{|an|}前n项和为-n2+n,
当n≥18,n∈N+时,{|an|}前n项和为n2-n+884.
即{|an|}前n项和Tn=
20.【解析】(1)设{an}的公差为d,{bn}的公比为q,则d为正数,an=3+(n-1)d,bn=qn-1
依题意有 ①
解得,或(舍去)
故an=3+2(n-1)=2n+1,bn=8n-1.
(2)Sn=3+5+…+(2n+1)=n(n+2)
∴=
=
=.
21.独具【解题提示】首先在解决第一问时考虑利用已知数列的前n项和与通项之间的关系求得通项公式,注意考虑当n=1时.在解决第二问时对通项公式进行变形裂项求和.
【解析】(1)由已知Sn=an-,
∴当n≥2时,Sn-1=an-1-;
∴Sn-Sn-1=an-an-1,
即an=an-an-1,
∴当n≥2时,an=3an-1;
∴数列{an}为等比数列,且公比q=3;
又当n=1时,S1=a1-,
即a1=a1-,
∴a1=3;∴an=3n.
(2)由题可知:log3an=log33n=n,
∴bn==;
∴{bn}的前n项和
Tn=(1-)+(-)+(-)+…+()
=1-=.
独具【方法技巧】解决数列问题的几种方法
1.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解.
2.数列求通项的常见类型与方法:公式法、由递推公式求通项,由Sn求通项,累加法,累乘法等.
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、分组法、倒序相加法等.
4.解综合题的关键在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.
22.【解析】(1)设鱼的原质量为a,增长率为x=200%=2,以后每年的鱼的质量依次组成数列{an}.
则a1=a(1+x),
a2=a(1+x)(1+),
a3=a(1+x)(1+)(1+),
a4=a(1+x)(1+)(1+)(1+),
a5=a(1+x)(1+)(1+)(1+)(1+),
将x=2代入得:a5=a(1+2)(1+1)·(1+)(1+)(1+)=a≈12.7a.
故饲养五年后,鱼的质量预计是原来的12.7倍.
(2)设从第n年开始,鱼的总质量开始下降,所以可以得出an=an-1(1+)·.
由?
?
所以,
故18≤2n≤36,∴4故经过五年后,鱼的总质量开始下降.
3.2 古典概型(第四、五课时)
3.2.1 —3.2.2古典概型及随机数的产生
一、教学目标:
1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
(2)掌握古典概型的概率计算公式:P(A)=
(3)了解随机数的概念;
(4)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
二、重点与难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.
三、学法与教学用具:1、与学生共同探讨,应用数学解决现实问题;2、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.
四、教学设想:
1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10。
师生共同探讨:根据上述情况,你能发现它们有什么共同特点?
2、基本概念:
(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本P121~126;
(2)古典概型的概率计算公式:P(A)=.
3、例题分析:
课本例题略
例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)
所以基本事件数n=6,
事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),
其包含的基本事件数m=3
所以,P(A)====0.5
小结:利用古典概型的计算公式时应注意两点:
(1)所有的基本事件必须是互斥的;
(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏。
例2 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则
A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事件A由4个基本事件组成,因而,P(A)==
例3 现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
分析:(1)为返回抽样;(2)为不返回抽样.
解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)= =0.512.
(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336, 所以P(B)= ≈0.467.
解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)= ≈0.467.
小结:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.
例4 利用计算器产生10个1~100之间的取整数值的随机数。
解:具体操作如下:键入
反复操作10次即可得之
小结:利用计算器产生随机数,可以做随机模拟试验,在日常生活中,有着广泛的应用。
例5 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?
分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%。
解:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数。
我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%。因为是投篮三次,所以每三个随机数作为一组。
例如:产生20组随机数:
812,932,569,683,271,989,730,537,925,
907,113,966,191,431,257,393,027,556.
这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为=25%。
小结:(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题。
(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间。
(3)随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数。
例6 你还知道哪些产生随机数的函数?请列举出来。
解:(1)每次按SHIFT RNA# 键都会产生一个0~1之间的随机数,而且出现0~1内任何一个数的可能性是相同的。
(2)还可以使用计算机软件来产生随机数,如Scilab中产生随机数的方法。Scilab中用rand()函数来产生0~1之间的随机数,每周用一次rand()函数,就产生一个随机数,如果要产生a~b之间的随机数,可以使用变换rand()*(b-a)+a得到.
4、课堂小结:本节主要研究了古典概型的概率求法,解题时要注意两点:
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=
(3)随机数量具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中。
5、自我评价与课堂练习:
1.在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是( )
A. B. C. D.以上都不对
2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是
A. B. C. D.
3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。
4.抛掷2颗质地均匀的骰子,求点数和为8的概率。
5.利用计算器生产10个1到20之间的取整数值的随机数。
6.用0表示反面朝上,1表正面朝上,请用计算器做模拟掷硬币试验。
6、评价标准:
1.B[提示:在40根纤维中,有12根的长度超过30mm,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为,因此选B.]
2.C[提示:(方法1)从盒中任取一个铁钉包含基本事件总数为10,其中抽到合格铁订(记为事件A)包含8个基本事件,所以,所求概率为P(A)==.(方法2)本题还可以用对立事件的概率公式求解,因为从盒中任取一个铁钉,取到合格品(记为事件A)与取到不合格品(记为事件B)恰为对立事件,因此,P(A)=1-P(B)=1-=.]
3.[提示;记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2)(红1,白3),(红2,白3),共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为.本题还可以利用“对立事件的概率和为1”来求解,对于求“至多”“至少”等事件的概率头问题,常采用间接法,即求其对立事件的概率P(A),然后利用P(A)1-P(A)求解]。
4.解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1号骰子的一个结果,因此同时掷两颗骰子的结果共有6×6=36种,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为.
5.解:具体操作如下
键入
反复按 键10次即可得到。
6.解:具体操作如下:
键入
7、作业:根据情况安排