北师大版八年级数学上册试题 第1章《勾股定理》测试卷(含答案)

文档属性

名称 北师大版八年级数学上册试题 第1章《勾股定理》测试卷(含答案)
格式 docx
文件大小 504.1KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2023-07-09 10:21:58

图片预览

文档简介

第1章《勾股定理》测试卷
一、单选题(本大题共10小题,每小题3分,共30分)
1.图中不能证明勾股定理的是( )
A.B.C. D.
2.若的三边长a、b、c满足,那么是( )
A.等腰三角形 B.直角三角形
C.锐角三角形 D.钝角三角形
3.如图,在中,以AC为直角边向外作,分别以AB,BC,CD,DA为直径向外作半圆,面积分别记为S1,S2,S3,S4,已知,,,则S4为( )
A.2 B.3 C. D.
4.如图,P是等边三角形内的一点,且,,,以为边在外作,连接,则以下结论中不正确的是( )
A. B. C. D.
5.如图,在△ABC中,AB=13,BC=14,S△ABC=84,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为(  )
A.15 B.12 C.10 D.9
6.如图,透明的圆柱形容器(容器厚度忽略不计)的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿的点A处,则蚂蚁吃到饭粒需爬行的最短路径是( )
A. B. C. D.
7.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=12,则下列关于S1、S2、S3的说法正确的是(  )
A.S1=2 B.S2=3 C.S3=6 D.S1+S3=8
8.如图,在中,,,,点是内的一点,连接,,,满足,则的最小值是( )
A.5 B.6 C.8 D.13
9.如图,A、B两点在直线l的两侧,点A到直线l的距离AC=4,点B到直线l的距离BD=2,且CD=6,P为直线CD上的动点, 则的最大值是( )
A. B. C. D.6
10.如图,在中,,以各边为斜边分别向外作等腰、等腰、等腰,将等腰和等腰按如图方式叠放到等腰中,已知,,则长为( )
A.2 B. C.6 D.8
二、填空题(本大题共8小题,每小题4分,共32分)
11.在中,,AD是BC边上的高,AD上有一点E,连接CE,,在BC上取一点F使,,,则______.
12.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是_____米.(精确到0.1米)
13.已知在△ABC中,AB= 8,BC =5,∠A=30°,则△ABC的面积是_______.
14.如图,已知Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P是BC边上的一个动点,点B与B′是关于直线AP的对称点,当△CPB'是直角三角形时,BP的长=_______.
15.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为 ,,,若,则的值是__________.
16.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)
17.在△ABC 中,若,则最长边上的高为_____.
18.如图所示,△ABC中,∠ACB=90°,AB=13,BC=12,AD是∠CAB的平分线,若P、Q分别是AD和AC上的动点,则AC=_______,PC+PQ的最小值是_______.
三、解答题(本大题共6小题,共58分)
19.(8分)如图,已知和中,,,,点C在线段BE上,连接DC交AE于点O.
(1)DC与BE有怎样的位置关系?证明你的结论;
(2)若,,求DE的长.
20.(8分)已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.求:BD的长.
21.(10分)如图,A城气象台测得台风中心在A城正西方向600km的B处,以每小时200km的速度向北偏东60°的方向移动,距台风中心500km的范围内是受台风影响的区域.
(1)A城是否受到这次台风的影响?为什么?
(2)若A城受到这次台风的影响,那么A城遭受这次台风影响有多长时间?
22.(10分)如图,点C为线段上一点,都是等边三角形,与交于点与相交于点G.
(1)求证:;
(2)求证:
(3)若,求的面积.
23.(10分)有一个如图所示的长方体的透明鱼缸,假设其长AD=80 cm,高AB=60 cm,水深AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.
(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;
(2)试求小虫爬行的最短路程.
24.(12分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.
●特例感知
①等腰直角三角形 勾股高三角形(请填写“是”或者“不是”);
②如图1,已知△ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若,试求线段CD的长度.
●深入探究
如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明;
●推广应用
如图3,等腰△ABC为勾股高三角形,其中,CD为AB边上的高,过点D向BC边引平行线与AC边交于点E.若,试求线段DE的长度.
答案
一、选择题
A.B.B.C.A.B.D.C.C.D.
二、填空题
11.12 12.2.6 13.. 14.1或
15.48. 16.29. 17.. 18. 5;.
三、解答题
19.
解:(1).
证明:

在和中,

(2)



20.
解:如图,过点A作AE⊥BC于点E,
∵AB=AC=10,BC=16,∴BE=CE=8,
在Rt△ACE中,利用勾股定理可知:AE===6,
设BD=x,则DE=8﹣x,DC=16﹣x,
又DA⊥CA,
在Rt△ADE和Rt△ADC中分别利用勾股定理得:AD2=AE2+DE2=DC2﹣AC2,
代入为:62+(8﹣x)2=(16﹣x)2﹣102,解得:x=.
即BD=.
21.
解:
(1)A城受到这次台风的影响,
理由:由A点向BC作垂线,垂足为M,
在Rt△ABM中,∠ABM=30°,AB=600km,则AM=300km,
因为300<500,所以A城要受台风影响;
(2)设BC上点D,DA=500千米,则还有一点G,有
AG=500千米.
因为DA=AG,所以△ADG是等腰三角形,
因为AM⊥BC,所以AM是DG的垂直平分线,MD=GM,
在Rt△ADM中,DA=500千米,AM=300千米,
由勾股定理得,MD==400(千米),
则DG=2DM=800千米,
遭受台风影响的时间是:t=800÷200=4(小时),
答:A城遭受这次台风影响时间为4小时.
22.
解:(1)证明:∵△ABC,△CDE是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACE=∠DCE+∠ACE,
即∠BCE=∠DCA,
∴△ACD≌△BCE(SAS).
(2)由(1)得△ACD≌△BCE,
∴∠CBG=∠CAF,
又∵∠ACF=∠BCG=60°,BC=AC,
在△ACF和△BCG中,

∴△ACF≌△BCG(ASA);
(3)∵△ACF≌△BCG,
∴S△ACF=S△BCG,CG=CF,而CF+CG=8,
∴CG=CF=4,
过G作GM⊥BD于M,过点F作FN⊥BD于N,
又∵∠ACB=∠DCE=60°,
∴GM=CG=,FN=CF=,
∴S△ACD=S△ACF+S△CDF
=S△BCG+S△CDF
=BC GM+CD FN
=(BC+CD)
=BD
=.
23.
解:(1)如图所示,AQ→QG为最短路线,
(2)因为AE=40cm,AA′=120cm,所以A′E=120-40=80(cm),
因为EG=60cm,所以A′G2=A′E2+EG2=802+602=10000,
所以A′G=100cm,所以AQ+QG=A′Q+QG=A′G=100cm,
所以小虫爬行的最短路程为100cm.
24.
解:●特例感知①等腰直角三角形是勾股高三角形,
故答案为:是;
②设
根据勾股定理可得:,
于是,
∴;
●深入探究:由可得:,而,
∴,即;
●推广应用
过点A向ED引垂线,垂足为G,
∵“勾股高三角形”△ABC为等腰三角形,且,
∴只能是,由上问可知.
又ED∥BC,∴.
而,
∴△AGD≌△CDB(AAS),
∴.
∵△ADE与△ABC均为等腰三角形,
根据三线合一原理可知.

∴,
∴.