§26.2.1抛物线y=ax2的图象和性质[下学期]

文档属性

名称 §26.2.1抛物线y=ax2的图象和性质[下学期]
格式 rar
文件大小 393.5KB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2008-05-04 13:42:00

图片预览

文档简介

课件21张PPT。喷泉(1)抛物线y=ax2的图象和性质函数y=ax2+bx+c (a,b,c是常数,a≠ 0) 叫做x的二次函数.什么叫二次函数?我们学过用什么方法画函数
的图象?主要有哪些步骤?观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:用描点法画二次函数y=x2的图象0123…0149…描点,连线y=x2观察图象,回答问题串(1)你能描述图象的形状吗?与同伴进行交流.(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.观察图象,回答问题串(3)图象 与x轴有交点吗?如果有,交点坐标是什么?(4)在对称轴左侧,随着x值的增大,y 的值如何变化?在对称轴右侧呢?观察图象,回答问题串(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?这条抛物线关于
y轴对称,y轴就
是它的对称轴. 对称轴与抛物
线的交点叫做
抛物线的顶点.二次函数y=x2的
图象形如物体抛射
时所经过的路线,我
们把它叫做抛物线.在对称轴的左
侧时,y随着x的
增大而减小. 在对称轴的右
侧时, y随着x的
增大而增大. 抛物线y=x2在x轴的上方(除顶点外),
顶点是它的最低点,开口向上,并且向
上无限伸展;当x=0时,函数y的值最小,
最小值是0.(1)二次函数y=-x2的图象是什么形状?(2)它与二次函数y=x2的图象有什么关系?你能根据表格中的数据作出猜想吗?xy0-4-3-2-11234-10-8-6-4-22-1描点,连线y=-x2这条抛物线关于
y轴对称,y轴就
是它的对称轴. 对称轴与抛物
线的交点叫做
抛物线的顶点.yy在对称轴的左侧
时,y随着x的增大
而增大. 在对称轴的右侧
时, y随着x的增大
而减小. y抛物线y= -x2在x轴的下方(除顶点外),
顶点是它的最高点,开口向下,并且向下
无限伸展;当x=0时,函数y的值最大,
最大值是0.抛物线顶点坐标对称轴位置开口方向增减性最值y=x2y= -x2(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方( 除顶点外)向上向下当x=0时,最小值为0.当x=0时,最大值为0.在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 函数y=ax2(a≠0)的图象和性质:y=x2y=-x21.顶点坐标与对称轴2.位置与开口方向3.增减性与最值1.抛物线y=ax2的顶点是原点,对称轴是y轴.2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.二次函数y=ax2的性质1.已知抛物线y=ax2经过点A(-2,-8)
(1)求此抛物线的函数解析式;
(2)判断点B(-1,-4)是否在此抛物线上;
(3)求出此抛物线上纵坐标为-6的点的坐标;
(4)若点(m,n)在此抛物线上,那么点
(-m,n)是否在此抛物线上?点(m,-n)呢?2.填空:
(1)抛物线y=2x2的顶点坐标是_____;
对称轴是______;在___________ 侧,
y随着x的增大而增大;在_________侧,
y随着x的增大而减小;当x= 时,函数y的值最小,最小值是 ;抛物线y=2x2在x轴的 方(除顶点外).(0,0)y轴对称轴的左0对称轴的右0上(2)抛物线 在x轴的 方(除顶点外),
当x_____时,y随着x的增大而增大;
当x_____时,y随着x的,增大而减小
当x=0时,函数y的值最大,最大值是_____,
当x 0时,y<0.下0<0>0回味无穷2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a>0时,在对称轴的左侧,y随着x的增大而减小;
在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a<0时,在对称轴的左侧,y随着x的增大而增大;
在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.1.抛物线y=ax2的顶点是原点,对称轴是y轴.由二次函数y=x2和y=-x2知: