教学时间
课题
23.1 图形的旋转(3)
课型
新授课
教
学
目
标
知 识
和
能 力
理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.
过 程
和
方 法
复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.
情 感
态 度
价值观
让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.
教学重点
用旋转的有关知识画图.
教学难点
根据需要设计美丽图案.
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、复习引入
1.(学生活动)老师口问,学生口答.
(1)各对应点到旋转中心的距离有何关系呢?
(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?
(3)两个图形是旋转前后的图形,它们全等吗?
2.请同学独立完成下面的作图题.
如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.
(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.
二、探索新知
从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30°的旋转图形.
因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
例1.如下图是菊花一叶和中心与圆圈,现以O为旋转中心画出分别旋转45°、90°、135°、180°、215°、270°、315°的菊花图案.
分析:只要以O为旋转中心、旋转角以上面为变化,旋转长度为菊花的最长OA,按菊花叶的形状画出即可.
解:(1)连结OA
(2)以O点为圆心,OA长为半径旋转45°,得A.
(3)依此类推画出旋转角分别为90°、135°、180°、215°、270°、315°的A、A、A、A、A、A.
(4)按菊花一叶图案画出各菊花一叶.
那么所画的图案就是绕O点旋转后的图形.
例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,请同学画出图案,它还是原来的菊花吗?
老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.
三、巩固练习
教材P59 练习.
四、应用拓展
例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.
分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.
解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;
(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;
(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A′G′、G′D′、D′H′、H′A′;
(4)所作出的图案就是所求的图案.
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;
2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.
作业
设计
必做
教材P60: 综合运用7、8.
选做
P60:9
教
学
反
思