《图形的相似》--相似三角形折叠问题
一、单选题
1.如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是( )
A.2 B.3 C.4 D.5
2.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为( )
A.2 B. C. D.
3.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为( )
A.2 B.4 C.3 D.2
4.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G,设正方形ABCD的周长为m,的周长为n,则的值为( )
A. B. C. D.随H点位置的变化而变化
5.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A. B. C. D.
6.如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是( )
A.6﹣2 B.3 C.2 D.6+2
7.在矩形ABCD中,BC=2,DC=,取AD中点E,连接BD、BE,将BDE沿BE翻折至BEF,过点A作AG⊥BF于G,则AG的值为( )
A. B. C. D.
8.如图,已知,,,点E为射线上一个动点,连接,将沿折叠,点B落在点处,过点作的垂线,分别交,于M,N两点,当为线段的三等分点时,的长为( )
A. B. C.或 D.或
9.如图,在矩形纸片ABCD中,点E、F分别在矩形的边AB、AD上,将矩形纸片沿CE、CF折叠,点B落在H处,点D落在G处,点C、H、G恰好在同一直线上,若AB=6,AD=4,BE=2,则DF的长是( )
A.2 B. C. D.3
10.如图,在正方形ABCD中,,M是AD边上的一点,.将沿BM对折至,连接DN,则DN的长是( )
A. B. C.3 D.
11.如图,在中,,点是的中点,连接,将沿翻折得到与交于点,连接.若,则点到的距离为( )
A. B. C. D.
12.如图,在中,,,是边上一点,且,连接,把沿翻折,得到,与交于点,连接,则的面积为( )
A. B. C. D.
13.如图,把某矩形纸片沿,折叠(点E、H在边上,点F,G在边上),使点B和点C落在边上同一点P处,A点的对称点为、D点的对称点为,若,为8,的面积为2,则矩形的长为( )
A. B. C. D.
14.如图,在中,,为边的中点,点是延长线上一点,把沿翻折,点落在处,与交于点,连接.当时,的长为( )
A. B. C. D.
15.如图,在△ABC中,AC=BC=4,∠C=90°,D是BC边上一点,且CD=3BD,连接AD,把△ACD沿AD翻折,得到△ADC',DC′与AB交于点E,连接BC′,则△BDC'的面积为( )
A. B. C. D.
16.已知Rt△ABC,∠ACB=90 ,BC=10,AC=20,点D为斜边中点,连接CD,将△BCD沿CD翻折得△B’CD,B’D交AC于点E,则的值为( )
A. B. C. D.
二、填空题
17.如图,在正方形中,分别是、边上的点,将四边形沿直线翻折,使得点、分别落在点、处,且点恰好为线段的中点,交于点,作于点,交于点.若,则________.
18.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.
19.如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=____cm.
20.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.
21.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰好落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的H处,有下列结论:①∠EBG=45°;②2S△BFG=5S△FGH;③△DEF∽△ABG;④4CE=5ED.其中正确的是_____.(填写所有正确结论的序号)
22.如图,在矩形中,,,对角线相交于点,点为边上一动点,连接,以为折痕,将折叠,点的对应点为点,线段与相交于点.若为直角三角形,则的长__________.
23.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为______.
24.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OC=3,OA=,D是BC的中点,将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于点E,连接DE,则点G的坐标为_________.
25.如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.
26.如图,在矩形中,,,是的中点,连接,是边上一动点,沿过点的直线将矩形折叠,使点落在上的点处,当是直角三角形时,__________.
27.如图,在矩形ABCD中,AB:BC=3:4,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为_____.
28.在矩形中,,,点,分别为,上的两个动点,将沿折叠,点的对应点为,若点落在射线上,且恰为直角三角形,则线段的长为______.
29.如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为___________________________.
30.如图,等边的边长为,点是边上一动点,将等边沿过点的直线折叠,该直线与直线交于点,使点落在直线上的点处,且折痕为则的长为______.
31.如图,正方形纸片ABCD沿直线BE折叠,点C恰好落在点G处,连接BG并延长,交CD于点H,延长EG交AD于点F,连接FH.若AF=FD=6cm,则FH的长为_____cm.
32.如图,已知矩形中,,,点,分别在边,上,沿着折叠矩形,使点,分别落在,处,且点在线段上(不与两端点重合),过点作于点,连接,给出下列判断:①;②折痕的长度的取值范围为;③当四边形为正方形时,为的中点;④若,则折叠后重叠部分的面积为.其中正确的是_____.(写出所有正确判断的序号).
33.如图,正方形ABCD的边长为4,E为AB的中点,将△ADE沿直线DE折叠后,点A落在点F处,DF交对角线AC于G,则FG的长是________.
三、解答题
34.如图,已知正方形纸片ABCD的边长为2,将正方形纸片折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.
(1)观察操作结果,找到一个与△EDP相似的三角形,并证明你的结论;
(2)当点P位于CD中点时,你找到的三角形与△EDP周长的比是多少?
35.在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形.如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.
解决问题:
(1)如图1,∠A=∠B=∠DEC=70°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)四边形AOBC在平面直角坐标系中的位置如图2所示,若点A,B,C的坐标分别为(6,8)、(25,0)、(19,8),则在四边形AOBC的边OB上是否存在强相似点?若存在,请求出其坐标;若不存在,请说明理由;
(3)如图3,将矩形ABCD沿CE折叠,使点D落在AB边上的点F处,若点F恰好是四边形ABCE的边AB上的一个强相似点,直接写出的值.
36.阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:
(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.
37.在△ABC中,∠ACB=90°,AB=25,BC=15.
(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若S△ABC=9S△DHQ,则HQ=____.
(2)如图2,折叠△ABC使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;
(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得△CMP和△HQP相似?若存在,求出PQ的长;若不存在,请说明理由.
38.如图,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,将四边形ACBD沿直线EF折叠,使D与C重合,CE与CF分别交AB于点G、H.
(1)求证:△AEG∽△CHG;
(2)△AEG与△BHF是否相似,并说明理由;
(3)若BC=1,求cos∠CHG的值.
39.已知矩形纸片ABCD中,AB=2,BC=3.
操作:将矩形纸片沿EF折叠,使点B落在边CD上.
探究:⑴如图1,若点B与点D重合,你认为和全等吗?如果全等,请给出证明,如果不全等,请说明理由;
⑵如图2,若点B与CD的中点重合,请你判断和之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;
⑶如图2,请你探索,当点B落在CD边上何处,即的长度为多少时,与全等.
40.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q.
(1)求∠ABP的度数;
(2)求的值;
(3)若CD边上有且只有2个点G,使△GPD与△GFC相似,请直接写出的值.
41.阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:
(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.
42.已知:如图,在四边形中,E是边的中点,连接.将沿直线折叠,将沿直线折叠,点同时落在边上点F处.延长相交于点G,连接.
(1)填空:直线与直线的位置关系是_______;
(2)若,求的值;
(3)在(2)的条件下,若与相似,求的长.
答案
一、单选题
D.B.C.B.B.C.C.D.A.D.D.B.D.D.B.A.
二、填空题
17.
18.2或或.
19. .
20.6或2.
21.①②④
22.或1
23.(﹣,)
24.(,).
25.或
26.或
27.或.
28.或
29.
30.或.
31.3
32.①②③④
33.
三、解答题
34.(1)与△EDP相似的三角形是△PCG.
证明:∵四边形ABCD是正方形,
∴∠A=∠C=∠D=90°.
由折叠知∠EPQ=∠A=90°.
∴∠1+∠3=90°,∠1+∠2=90°.
∴∠2=∠3.
∴△PCG∽△EDP.
(2)设ED=x,则AE=2﹣x,
由折叠可知:EP=AE=2﹣x.
∵点P是CD中点,
∴DP=1.
∵∠D=90°,
∴ED2+DP2=EP2,
即x2+12=(2﹣x)2
解得x=.
∴.
∵△PCG∽△EDP,
∴.
∴△PCG与△EDP周长的比为4:3.
35.(1)如图1中,结论:点E是四边形ABCD的边AB上的相似点.理由如下:
∵∠DEB=∠A+∠ADE=∠DEC+∠CEB,
又∵∠A=∠B=∠DEC,
∴∠ADE=∠CEB,
∵∠A=∠B,
∴△DAE∽△EBC.
∴E是四边形ABCD的边AB上的相似点.
(2)当点E是AB中点时,点E是四边形ABCD的边AB上的强相似点.
理由:∵△DAE∽△EBC,
∴
∴
∵AE=EB,
∴
∵∠DEC=∠B,
∴△DEC∽△EBC,
∴点E是四边形ABCD的边AB上的强相似点.
(3)如图2中,结论:.理由如下:
∵点E是四边形ABCM的边AB上的一个强相似点,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折叠可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴
在Rt△BCE中,
∴
36.(1)点E是四边形ABCD的边AB上的相似点.
理由:∵∠A=55°,
∴∠ADE+∠DEA=125°.
∵∠DEC=55°,
∴∠BEC+∠DEA=125°.
∴∠ADE=∠BEC.
∵∠A=∠B,
∴△ADE∽△BEC.
∴点E是四边形ABCD的AB边上的相似点.
(2)作图如下:
(3)∵点E是四边形ABCM的边AB上的一个强相似点,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折叠可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=∠BCD=30°,
∴BE=CE=AB.
在Rt△BCE中,tan∠BCE==tan30°,
∴,
∴.
37.解:(1)如图1中,
在△ABC中,∵∠ACB=90°,AB=25,BC=15,
∴AC==20,设HQ=x,
∵HQ∥BC,
∴,
∴AQ=x,
∵S△ABC=9S△DHQ,
∴×20×15=9××x×x,
∴x=5或﹣5(舍弃),
∴HQ=5,
故答案为5.
(2)如图2中,
由翻折不变性可知:AE=EM,AF=FM,∠AFE=∠MFE,
∵FM∥AC,
∴∠AEF=∠MFE,
∴∠AEF=∠AFE,
∴AE=AF,
∴AE=AF=MF=ME,
∴四边形AEMF是菱形.
(3)如图3中,
设AE=EM=FM=AF=4m,则BM=3m,FB=5m,
∴4m+5m=25,
∴m=,
∴AE=EM=,
∴EC=20﹣=,
∴CM=,
∵QG=5,AQ=,
∴QC=,设PQ=x,
当时,△HQP∽△MCP,
∴,
解得:x=,
当=时,△HQP∽△PCM,
∴
解得:x=10或,
经检验:x=10或是分式方程的解,且符合题意,
综上所,满足条件长QP的值为或10或.
38.解:(1)∵△ABD是等边三角形,∴∠EAG=∠D=60°;
根据折叠的性质知:DE=CE,∠D=∠GCH=∠EAG=60°,又∵∠EGA=∠HGC,∴△AEG∽△CHG.
(2)△AEG与△BHF相似.理由如下:
∵∠BAD=∠ABD=∠D,∠GCH=∠D,∴∠BAD=∠GCH=∠ABD,∴∠1+∠2=∠3+∠4.∵∠2=∠3,∠4=∠5,∴∠1=∠5, ∴△AEG∽△BHF;
(3)△ABC中,∠BAC=30°,BC=1,则AC=,AB=2,故AD=AB=2.
设DE=EC=x,则AE=2﹣x.
在Rt△AEC中,由勾股定理,得:(2﹣x)2+3=x2,解得x=,∴AE=,EC=,∴cos∠AEC==.由(1)的相似三角形知:∠AEG=∠CHG,故cos∠CHG=cos∠AEC=.
39.(1)全等,
证明:∵四边形ABCD是矩形,
∴∠A=∠B=∠C=∠ADC=90 ,AB=CD,
由题意知:∠A=∠A1,∠B=∠A1DF=90 ,CD=A1D,
∴∠A1=∠C=90 ,∠CDF+∠EDF=90 ,
∴∠A1DE=∠CDF,
在△EDA1和△FDC中,
,
∴△EDA1≌△FDC(ASA);
(2)△B1DG和△EA1G全等,△FCB1与△B1DG相似,
设FC=x,则B1F=BF=3 x,B1C=DC=1,
∴x2+12=(3 x)2,
∴x=,
∴△FCB1与△B1DG相似,相似比为4:3.
(3)△FCB1与△B1DG全等,
设B1C=a,则有FC=B1D=2 a,B1F=BF=1+a,
在直角△FCB1中,可得(1+a)2=(2 a)2+a2,
整理得a2 6a+3=0,
解得:a=3 (另一解舍去),
∴当B1C=3 时,△FCB1与△B1DG全等.
40.解:(1)∵ ,
∴,
由翻折可知:,
∴ ,
∵四边形ABCD是矩形,
∴,
∴,
∴,
∵ ,
∴ ,
∴.
(2)由翻折可知:EF垂直平分PB,设,
在中,∵ ,
∴,
在中, ,
∴ ,
∴ ,
∴ ,
∴ .
(3)如图3﹣1中,作点P关于CD的对称点N,连接FN交CD于G,此时,以PF为直径作圆交CD 于G1,G2,此时 ,.
①当点G与G2重合时,满足条件,易证,设 ,
则: ,
∵ ,
∴ ,
∴ ,
∴ .
②当G1,与G2重合时,满足条件,此时以PF为直径的圆与CD相切,设 ,
则:, ,
∵,
∴ ,
∴,
∴,,
∴ .
41.(1)点E是四边形ABCD的边AB上的相似点.
理由:∵∠A=55°,
∴∠ADE+∠DEA=125°.
∵∠DEC=55°,
∴∠BEC+∠DEA=125°.
∴∠ADE=∠BEC.
∵∠A=∠B,
∴△ADE∽△BEC.
∴点E是四边形ABCD的AB边上的相似点.
(2)作图如下:
(3)∵点E是四边形ABCM的边AB上的一个强相似点,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折叠可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=∠BCD=30°,
∴BE=CE=AB.
在Rt△BCE中,tan∠BCE==tan30°,
∴,
∴.
42.解:(1)由折叠得:△ADE≌△FDE,△BCE≌△FCE,
∴∠A=∠DFE,∠B=∠EFC,
∵∠DFE+∠EFC=180°,
∴∠A+∠B=180°,
∴AD∥BC,
即直线AD与直线BC的位置关系是平行,
故答案为:平行;
(2)由折叠的性质得:∠AED=∠DEF,∠BEC=∠FEC,
∵∠AED+∠DEF+∠BEC+∠FEC=180°,
∴∠AED+∠BEC=90°,
∵∠A=90°,
∴∠AED+∠ADE=∠DEF+∠CEF=90°,
∴∠ADE=∠BEC,
由(1)得AD∥BC,
∴∠A=∠B=90°,
∴△ADE∽△BEC,
∴,
∵E是边AB的中点,AB=12,
∴AE=BE=6,
∴AD BC=36;
(3)①当∠CFG∽△EFD时,
∵△CFG∽△EFD,△ADE≌△FDE,
∴△CFG∽△ADE,
∵△BCE≌△FCE,△ADE∽△BEC,
∴△CFG∽△CFE,
∴∠CEF=∠CGF,∠ECF=∠GCF,
∴CE=CG,
∴CD⊥EG,EF=GF,
∴DE=DG,
∴∠DGF=∠DEF,
∴∠DGF+∠CGF=∠DEG+∠CEF=90°,
∵∠A=∠B=90°,
∴四边形ABCG是矩形,
∴CG=AB=12,
∴CE=12,
在Rt△BEC中,
BC6,
∵AD BC=36,
∴AD=2.
②如图2中,当△CFG∽△DFE时,延长DE交CB的延长线于T.设AD=x,BC=y.
∵∠A=∠EBT=90°,∠AED=∠BET,AE=EB,
∴△AED≌△BET(AAS),
∴DE=ET,
∵△CFG∽△DFE,
∴∠FCG=∠EDF,
∴DT∥CG,
∵DG∥CT,
∴四边形DTCG是平行四边形,
∴CG=DT=2DE,
∴,
∵AD=DF,CF=BC,
∴y=2x,
∵xy=36,
∴x2=18,
∴x=3或﹣3(舍弃),
∴AD=3,
综上所述,满足条件的AD的值为2或3.