九年级数学上册试题 2.6应用一元二次方程-北师大版(含答案)

文档属性

名称 九年级数学上册试题 2.6应用一元二次方程-北师大版(含答案)
格式 docx
文件大小 318.3KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2023-07-11 21:27:06

图片预览

文档简介

2.6应用一元二次方程
一、单选题
1.某公司今年1月份生产口罩250万只,按计划第一季度的总生产量要达到910万只.设该公司2、3两个月生产量的月平均增长率为,根据题意列方程正确的是( )
A. B.
C. D.
2.某单位要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场)计划安排20场比赛, 应邀请多少个球队参加比赛? 若设x个球队参加比赛,则可列方程为( )
A. B. C. D.
3.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为375平方米的矩形临时仓库,仓库一边靠墙,另三边用总长为55米的栅栏围成,若设栅栏AB的长为x米,则下列各方程中,符合题意的是( )
A.x(55﹣x)=375 B.x(55﹣2x)=375
C.x(55﹣2x)=375 D.x(55﹣x)=375
4.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.
A.40 B.10 C.9 D.8
5.《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈=10尺,1尺=10寸)?若设门的宽为x寸,则下列方程中,符合题意的是(  )
A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12
C.x2+1002=(x+68)2 D.x2+(x+68)2=1002
6.有一个模拟传染病传播的电子游戏模型:在一个方框中,先放入足够多的白球(模拟健康人),然后在框中同时放入若干个红球(模拟最初感染源),程序设定,每经过一分钟,每个红球均恰好能使方框中个白球同时变成红球(为程序设定的常数),若最初放入的白球数为400个,红球数为4个,从放入红球开始,经过2分钟后,红球总数变为64个,则应满足的方程是( )
A.4(1+)=64 B.4(1+)=400
C.4=64 D.4=400
7.某商场将进货价为45元的某种服装以65元售出,平均每天可售30件,为了尽快减少库存,商场决定采取适当的降价措施,调查发现:每件降价1元,则每天可多售5件,如果每天要盈利800元,每件应降价( )
A.12元 B.10元 C.11元 D.9元
8.一个容器盛满纯药液千克,第一次倒出一部分药液后加满水,第二次又倒出同样多的药液,再加满水,此时容器内的纯药液利下千克,那么每次倒出的药液是( )
A.千克 B.千克 C.千克 D.千克
9.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有( )
A.9人 B.10人 C.11人 D.12人
10.如图①,在矩形中,,对角线,相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则对角线的长为( )
A.3 B.4 C.5 D.6
二、填空题
11.某种品牌运动服经过两次降价,每件零售价由600元降为384元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,则可列方程为_________.
12.有1个人得了传染病,传染2轮后共有100人患病,如果不加控制,5轮传染后共有___________人患病.
13.已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个两位数小4,设个位上的数字为,列出关于的方程:______.
14.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为_____.
15.某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是个,则每个支干长出的小分支数目为________.
16.如图是一个的正方形格子,要求横、竖、对角线上的三个数之和相等,请根据图中提供的信息求出等于_____.
17.如图,在Rt△ABC中,∠B=90°,AB=BC=12 cm,点D从点A开始沿边AB以2 cm/s的速度向点B移动,移动过程中始终保持四边形DFCE(点E,F分别在AC,BC上)为平行四边形,则出发________s时,四边形DFCE的面积为20 cm2.
18.某商场销售一批衬衫, 平均每天可售出20件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件.若商场平均每天赢利1200元,每件衬衫应降价______元.
19.如图是某月的月历表,在此月历表上可以用一个矩形圈出个位置相邻的数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为_____.
20.近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A、B两种伴手礼礼盒,A礼盒装有2个福字饼,2个禄字饼:B礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A、B两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A、B两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为_____元.
三、解答题
21.2020年1月份以来,新型冠状病毒肺炎在我国蔓延,假如有一人感染新型冠状病毒肺炎,经过两轮传染后共有64人患病.
(1)求每轮传染中平均每个人传染了几个健康的人;
(2)如果不及时控制,第三轮传染将又有多少个健康的人患病?
22.某工厂一种产品2017年的产量是100万件,计划2019年产量达到121万件.假设2017年到2019年这种产品产量的年增长率相同.
(1)求2017年到2019年这种产品产量的年增长率;
(2)2018年这种产品的产量应达到多少万件?
23.如图,要建一个底面积为130平方米的鸡场,鸡场一边靠墙(墙长16米),并在与墙平行的一边开道1米宽的门,现有能围成32米长的木板.求鸡场的长和宽各是多少米?
24.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
25.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:
(1)当时,用含x的代数式表示每台学习机的售价;
(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?
(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?
26.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿边CB向点B以2cm/s的速度移动.
(1)如果点P、Q同时出发,几秒后,可使△PCQ的面积为8cm2?
(2)点P、Q在移动过程中,是否存在某一时刻,使得四边形APQB的面积等于△ABC的面积的?若存在,求出运动的时间;若不存在,说明理由.
27.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.
(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?
(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分别比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.
28.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.
(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?
(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?
(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?
29.某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.
(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?
(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调查与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加,每户物管费将会减少;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加,每户物管费将会减少.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少,求的值.
答案
一、单选题
D.A.A.D.D.C.B.B.B.C
二、填空题
11.600(1﹣x)2=384.
12.100000
13..
14.9.
16.7.
17.1或5.
18.20.
19.144.
20.5740.
三、解答题
21.(1)设每轮传染中平均每个人传染了x个健康的人.
依题意,得,
解得(不合题意,舍去).
答:每轮传染中平均每个人传染了7个健康的人.
(2)(个).
答:第三轮传染将又有448个健康的人患病.
22.
(1)2017年到2019年这种产品产量的年增长率,
则:,
解得:或(舍去),
答:2017年到2019年这种产品产量的年增长率10%;
(2)2018年这种产品的产量为:(万件),
答:2018年这种产品的产量应达到110万件.
23.解:设鸡场的垂直于墙的一边长为x,
依题意得(32-2x+1)x=130,
2x2-33x+130=0,
(x-10)(2x-13)=0,
∴x1=10或x2=6.5,
当x1=10时,32-2x+1=13<16;
当x2=6.5时,32-2x+1=20>16,不合题意舍去.
答:鸡场的长和宽分别为13m,10m.
24.如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件;
设每件童装应降价x元,
依题意得(40 x)(20+2x)=1200,
整理得,
解之得,
因要减少库存,故x=20.
答:每件童装应降价20元.
25.(1)由题意可知当时,每台学习机的售价为.
(2)设题图中直线的解析式为.
把和代入得
解得
故直线解析式为.
当时,进价为(元),
售价为(元),
则每台学习机可以获利(元).
(3)当时,每台学习机的利润是,则.
解得(舍去).
当时,每台学习机的利润是,则,
解得(舍去).
答:该商店可能购进并销售学习机80台或30台.
26.解:(1)设秒后,△PCQ的面积为8cm2,
由题意,得,
解得,,
所以,2秒或4秒时,△PCQ的面积为8cm2;
(2)不存在.理由如下:
设秒时,四边形APQB的面积等于△ABC的面积的,则△PCQ的面积是△ABC的面积的.
由题意,得,即,
由于,方程没有实数根,
所以,不存在某一时刻使四边形APQB的面积等于△ABC面积的.
27.(1)10.5万元=105000元
设该乡镇有名高中学生获得了资助,则该乡镇有名初中学生受到资助,由题意得:
解得:

∴该乡镇分别有50名初中学生和25名高中学生获得了资助.
(2)由题意得:

设,则方程化为:

解得(舍)或
∴.
28.(1)过点P作PE⊥CD于E.
则根据题意,得
EQ=16-2×3-2×2=6(cm),PE=AD=6cm;
在Rt△PEQ中,根据勾股定理,得
PE2+EQ2=PQ2,即36+36=PQ2,
∴PQ=6cm;
∴经过2s时P、Q两点之间的距离是6cm;
(2)设x秒后,点P和点Q的距离是10cm.
(16-2x-3x)2+62=102,即(16-5x)2=64,
∴16-5x=±8,
∴x1=,x2=;
∴经过s或sP、Q两点之间的距离是10cm;
(3)连接BQ.设经过ys后△PBQ的面积为12cm2.
①当0≤y≤时,则PB=16-3y,
∴PB BC=12,即×(16-3y)×6=12,
解得y=4;
②当<x≤时,
BP=3y-AB=3y-16,QC=2y,则
BP CQ=(3y-16)×2y=12,
解得y1=6,y2=-(舍去);
③<x≤8时,
QP=CQ-PQ=22-y,则
QP CB=(22-y)×6=12,
解得y=18(舍去).
综上所述,经过4秒或6秒△PBQ的面积为 12cm2.
29.(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套.
由题意得知:
解得
答:该小区有250套80平方米住宅.
(2)
参与活动一:
50平方米住宅每户所交物管费为100元,有套参与活动一,
80平方米住宅每户所交物管费为160元,有套参与活动二,
参与活动二:
50平方米住宅每户所交物管费为元,有套参与活动一;
80平方米住宅每户所交物管费为元,有50套参与活动二;
由题意得:
令.
化简得:.
解得:(舍去),
(舍去)
答:的值为50.