山东省烟台市2022-2023学年高二下学期期末学业水平诊断数学试题(Word版含答案)

文档属性

名称 山东省烟台市2022-2023学年高二下学期期末学业水平诊断数学试题(Word版含答案)
格式 zip
文件大小 511.9KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-07-12 07:48:52

文档简介

2022~2023 学年度第二学期期末学业水平诊断
高二数学参考答案及评分标准
一、选择题
C A B C A C D C
二、选择题
9. BCD 10. ACD 11. BC 12. BCD
三、填空题
5
13.如: ln x (答案不唯一) 14. a ≥ 1 e 15.[0, ) 16. 2,
3 11
四、解答题
17.解:(1)当a = 1时, A ={x | 2 < x < 3}, B ={x | 5 ≤ x ≤ 2}. ············ 3 分
所以 A B ={x | 2 < x ≤ 2}; ··················································· 4 分
(2)因为 A B = B ,所以 A B . ················································ 5 分
当 A = ,即a 3 ≥ 2a +1,a ≤ 4时,满足题意; ·························· 7 分
a > 4
1
当 A ≠ 时, 2a +1≤ 2 ,所以 2 ≤ a ≤ . ································ 9 分
2 a 3 ≥ 5
1
综上,实数a 的取值范围是 ( ∞, 4] [ 2, ]. ······························· 10分
2
2
18.解:(1) f ′(x) = 3ax + 2bx + 2, ················································· 2 分
因为1和2 是方程3ax2 + 2bx + 2 = 0的两个根,
1 2b所以 + 2 = ,1×2 2= , ····················································· 4 分
3a 3a
所以a 1 ,b 3= = . ·································································· 6 分
3 2
(2)由题意,当 x ≤ 0 时, g′(x) = f ′(x) > 0,所以 g(x) 单调递增. ········ 7 分
因为 g(x)是定义在R 上的奇函数,所以当 x ≥ 0 时, g(x)单调递增,··· 8 分
所以 g(x)在R 上单调递增. ························································· 9 分
于是 g(2x 3) + g(x) > 0转化为 g(2x 3) > g(x) = g( x), ·········· 10分
于是2x 3 > x,所以 x > 1,
所以不等式的解集为 (1,+∞) . ······················································ 12分
19.解:(1) f'(x)=aex + b ,因为 f (x) 在 x = 0 处取得极小值0 ,
所以 f (0) = a 1= 0, f'(0)=a + b = 0, ········································ 2 分
解得a =1,b = 1 x,所以函数 f (x) = e x 1, ································ 3 分
f'(x)=ex 1, k = f ′(1) = e 1, f (1) = e 2 , ·································· 4 分
高二数学答案(第 1 页,共 4 页)
{#{QQABCY6EogigQhAAAQBCEwFSCAKQkhCCCAgOwBAUIEAASQFABCA=}#}
所以,切线方程为 y = (e 1)x 1. ··················································· 6 分
(2)设 g(x) = f (x) + f (2x) 3x = ex + e2x 6x 2 ,则m ≤ g(x)min . ······ 7 分
因为 g'(x) = ex + 2e2x 6 = (ex + 2)(2ex 3) . ···································· 8 分
g'(x) 0 x ln 3 x 3令 = ,得 = ,当 > ln 时, g'(x) > 0, g(x) x ln 3单增;当 < 时,
2 2 2
g'(x) < 0, g(x) 单减; ······························································· 10分
x 3 3 7 3所以 = ln 时, g(x)min = g(ln ) = 6ln , ····························· 11分 2 2 4 2
所以m 7≤ 6ln 3 . ····································································· 12分
4 2
x > 0 f ′(x) 1 ax 120.解:(1)易知 , = a = , ································· 1 分
x x
当 a ≤ 0 时, f ′(x) < 0,函数 f (x) 在 (0,+∞)上单调递减; ··················· 3 分
当 a > 0时,x∈ (0, 1)时,f ′(x) 1< 0,f (x) 单调递减,x∈ ( ,+∞) 时,f ′(x) > 0,f (x)
a a
单调递增. ··················································································· 5 分
综上,当a ≤ 0 时,函数 f (x) 在 (0, 1+∞)上单调递减;当a > 0时, f (x) 在 (0, )上单调
a
(1递减,在 ,+∞)上单调递增; ······················································· 6 分
a
1
(2)由(1)可知,当0 < a <1时, f (x) 在 x = 处取得最小值1+ ln a , ·· 7 分
a
若 x∈ (0,+∞),使得 f (x) < 3a a2 ln 2,只需a2 3a +1+ ln a + ln 2 < 0 .
令 g(a) = a2 3a +1+ ln a + ln 2,
g′(a) 2a 3 1 (2a 1)(a 1)由 = + = , ········································· 8 分
a a
1
可得,当a∈ (0, ) 时, g′(a) > 0, g(a) 1单调递增,当a∈ ( ,1)时, g′(a) < 0,
2 2
g(a) 单调递减, ···································································· 10分
1 1 1 3 1 1
故当a = 时, g(a)
2 max
= g( ) = +1+ ln + ln 2 = < 0 .
2 4 2 2 4
所以, x∈ (0,+∞),使得 f (x) < 3a a2 ln 2 . ····························· 12分
21.解:(1)由题意可知,当 x∈[0, 40]时, y = 90+ 2x 3 x2 + 900 ,
y′ = 2 3 1 2x 3x× × = 2 , ································· 3 分
2 x2 + 900 x2 + 900
高二数学答案(第 2 页,共 4 页)
{#{QQABCY6EogigQhAAAQBCEwFSCAKQkhCCCAgOwBAUIEAASQFABCA=}#}
令 y′ = 0,可得 x =12 5 ( x = 12 5 舍), ·································· 4 分
当 x∈[0,12 5)时, y′ > 0, y(x)单增;当 x∈ (12 5,40]时, y′ < 0, y(x)单减,
所以当 x =12 5 时,函数 y 取得最大值90 30 5 , ························ 6 分
显然90 30 5 < 30 ,所以公司这一目标不能实现; ························· 7 分
(2)由(1)可知,当 x∈[0, 40]时,公司年增加最大利润为90 30 5 万元,
当 x∈ (40,100]时, y = 90x x2 1980 = (x 45)2 +45,
当 x = 45时, y 取最大值45,···················································· 10分
又因为90 30 5 < 45, ··························································· 11分
所以投资45万元,此时公司年增加利润为45万元. ··························· 12分
22.解:(1)由题知, f (x) 的定义域为 (0,+∞),
f ′(x) = ln x +1+ x 1= ln x + x, ················································ 1 分
显然 f ′(x)在 (0,+∞)上单调递增,又 f ′(1) 1= 1+ < 0, f ′(1) =1> 0 ,
e e
1
所以 x0 ∈ ( ,1),使得 f ′(x0 ) = 0 ,即 x0 + ln x0 = 0, ······················ 3 分 e
所以当 x∈ (0, x0 )时,f ′(x) < 0,函数 f (x) 单调递减,当 x∈ (x0 ,+∞) 时,f ′(x) > 0,
f (x) 单调递增,且 f (x0 ) = x
1 2 1 2
0 ln x0 + x0 x0 = x0 x0 < 0 , ······· 5 分 2 2
因为当 x → 0 时, f (x) < 0且 f (x) → 0, f (2) = 2ln 2 > 0,
所以 f (x) 在 (1, 2)上有唯一的零点;·············································· 6 分
(2)由题意可得,g(x) = (x 1)ex af (x) = (x 1)ex a(x ln x 1+ x2 x),x∈ (0,+∞),
2
g′(x) = xex a(x + ln x) = xex a ln(xex ),
因为 g(x) 有两个极值点,所以 g′(x)有两个变号零点, ······················ 7 分
令 t = xex > 0 ,显然 t = xex 在 x∈ (0,+∞)上单调递增,
要使 g′(x)有两个变号零点,只需h(t) = t a ln t 有两个变号零点, ······· 8 分
h′(t) 1 a t a= = (t > 0),
t t
当 a ≤ 0 时,h′(t) > 0 在 (0,+∞)上恒成立,h(t)单调递增, 不满足题意;
当 a > 0时,在 (0, a)上 h′(t) < 0,函数h(t)单调递减,
高二数学答案(第 3 页,共 4 页)
{#{QQABCY6EogigQhAAAQBCEwFSCAKQkhCCCAgOwBAUIEAASQFABCA=}#}
在 (a,+∞)上h′(t) > 0 ,函数h(t)单调递增,
所以h(t)在 t = a 时取得最小值h(a) = a a ln a , ··························· 10分
要使h(t) = t a ln t 有两个变号零点,只需h(a) = a a ln a < 0 ,
解得a > e,
此时h(1) =1> 0 , h(ea ) = ea a2 > 0,
所以h(t)在 (1, a)和 (a, ea )上各有一个变号零点,满足题意,
综上所述,实数a的取值范围为 (e,+∞) . ······································· 12分
高二数学答案(第 4 页,共 4 页)
{#{QQABCY6EogigQhAAAQBCEwFSCAKQkhCCCAgOwBAUIEAASQFABCA=}#}烟台市2022-2023学年高二下学期期末学业水平诊断
数学
注意事项:
1.本试题满分150分,考试时间为120分钟.
2.答卷前,务必将姓名和准考证号填涂在答题纸上.
3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.
1.若函数,则( )
A. B. C. D.
2.已知全集,,,则图中阴影部分表示的集合为( )
A. B. C. D.
3.若实数a使得“,”为真命题,实数a使得“,”为真命题,则p是q的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
4.某银行拟面向部分科创小微企业开展贷款业务.调查数据表明,科创小微企业的贷款实际还款比例关于其年收入x(单位:万元)的函数模型为.已知当贷款小微企业的年收入为10万元时,其实际还款比例为50%,若银行期待实际还款比例为60%,则贷款小微企业的年收入约为( )(参考数据:,)
A.14万元 B.16万元 C.18万元 D.20万元
5.函数的部分图象大致为( )
A.B.C.D.
6.已知定义在上的奇函数,则的值为( )
A. B.2 C. D.4
7.定义在上的函数满足,是偶函数,若在上单调递增,,,,则( )
A. B. C. D.
8.已知函数,若函数有三个不同的零点,则实数m的取值范围为( )
A. B. C. D.
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.已知,,则( )
A. B. C. D.
10.已知函数,则( )
A.有极大值 B.在上单调递增
C.的图象关于点中心对称
D.对,,都有
11.对于函数,若在其定义域内存在使得,则称为函数的一个“不动点”,下列函数存在“不动点”的有( )
A. B. C. D.
12.关于曲线和的公切线,下列说法正确的有( )
A.无论a取何值,两曲线都有公切线 B.若两曲线恰有两条公切线,则
C.若,则两曲线只有一条公切线 D.若,则两曲线有三条公切线
三、填空题:本题共4小题,每小题5分,共20分.
13.写出一个同时具有下列性质的函数______.
①;②为增函数.
14.若函数在上单调递增,则实数a的取值范围为______.
15.已知函数,若方程有两个不相等的实数根,则实数a的取值范围为______.
16.若是区间上的单调函数,满足,,且(为函数的导数),则可用牛顿切线法求在区间上的根的近似值:取初始值,依次求出图象在点处的切线与x轴交点的横坐标,当与的误差估计值(m为的最小值)在要求范围内时,可将相应的作为的近似值.用上述方法求方程在区间上的根的近似值时,若误差估计值不超过0.01,则满足条件的k的最小值为______,相应的值为______.(本小题第一空2分,第二空3分)
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(10分)已知集合,.
(1)当时,求;
(2)若,求实数a的取值范围.
18.(12分)已知函数,的解集为.
(1)求a,b的值;
(2)若是定义在上的奇函数,且当时,,求不等式的解集.
19.(12分)若函数在处取得极小值0.
(1)求的图象在点处的切线方程;
(2)若不等式恒成立,求实数m的取值范围.
20.(12分)已知函数.
(1)讨论函数的单调性;
(2)证明:当时,,使得.
21.(12分)某物流公司计划扩大公司业务,但总投资不超过100万元,市场调查发现,投入资金x(万元)和年增加利润y(万元)近似满足如下关系.
(1)若该公司投入资金不超过40万元,能否实现年增加利润30万元?
(2)如果你是该公司经营者,你会投入多少资金?请说明理由.
22.(12分)已知函数.
(1)求函数的零点个数;
(2)若有两个极值点,求实数a的取值范围.
同课章节目录