12.2三角形全等的判定(3)
一、选择题
1.若按给定的三个条件画一个三角形,图形惟一,则所给条件不可能是( )
A.两边一夹角 B.两角一夹边 C.三边 D.三角
2. 在△△中,已知,,要判定这两个三角形全等,还需要条件( )
A. B. C. D.
3.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是( )
A、甲乙 B、甲丙 C、乙丙 D、乙
4.对于下列各组条件,不能判定的一组是( )
A.,,
B.,,
C.,,
D.,,
5.在和中,已知,,在下列说法中,错误的是( )
A.如果增加条件,那么()
B.如果增加条件,那么()
C.如果增加条件,那么()
D.如果增加条件,那么()
二、填空题
6.如图,点B、E、F、C在同一直线上. 已知∠A =∠D,∠B =∠C,要使△ABF≌△DCE,需要补充的一个条件是 (写出一个即可).
7.如图,直线 L过正方形 ABCD 的顶点 B , 点A、C 到直线 L 的距离分别是AE=1 ,CF=2 , 则EF长
三、解答题
8.如图,点分别在上,且,.
求证:.
9. 如图,已知AC平分∠BAD,∠1=∠2,求证:AB=AD
参考答案
1.D 2.C 3.C 4.C 5.B
6.AB = DC(填AF=DE或BF=CE或BE=CF也对) 7.3
8.,,
又
,即.
9. 证明:∵AC平分∠BAD ∴∠BAC=∠DAC.∵∠1=∠2∴∠ABC=∠ADC.
在△ABC和△ADC中
∴△ABC≌△ADC(AAS).∴AB=AD.
12.2三角形全等的判定(3)
学习目标
1.探索三角形全等的“角边角”和“角角边”的条件
2.应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角相等.
学习重点:应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角相等.
学习难点:理解,掌握三角形全等的条件:“ASA”“AAS”
学习过程
一、学习准备
1.复习尺规作图
(1)作线段AB等于已知线段a,
(2)作∠ABC,等于已知∠α
2.我们已经知道的判定三角形全等的方法有哪些?
二、合作探究
探究4:
先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?
结论:两角和 分别相等的两个三角形全等(可以简写成“角边角”或“ ”).
例题讲解:
例3 如图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.
例4 在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
结论:两角和 分别相等的两个三角形全等(可以简写成“角角边”或“ ”).
再次探究:
三角对应相等的两个三角形全等吗?
结论:三个角对应相等的两个三角形 全等.
现在为止,判定两个三角形全等我们已有了哪些方法?
结论:
三、巩固练习
教材P41练习1
教材P41练习1
四、课堂小结
我们有五种判定三角形全等的方法:
1.全等三角形的定义
2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)
五、当堂清
1.满足下列用哪种条件时,能够判定ΔABC≌ΔDEF( )
(A)AB=DE,BC=EF, ∠A=∠E (B)AB=DE,BC=EF ∠A=∠D
(C) ∠A=∠E,AB=DF, ∠B=∠D (D) ∠A=∠D,AB=DE, ∠B=∠E
2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
(A)带①去 (B)带②去 (C)带③去 (D)带①和②去
3.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )
A.①和② B.②和③ C.①和③ D.①②③
4. 图中全等的三角形是 ( )
A.Ⅰ和Ⅱ B.Ⅱ和Ⅳ C.Ⅱ和Ⅲ D.Ⅰ和Ⅲ
5.已知:如图 , AC⊥BC于C , DE⊥AC于E ,
AD⊥AB于A , BC=AE.若AB=5 , 则AD=___________.
6、.如图,AB⊥BC, AD⊥DC, ∠1=∠2.
求证:AB=AD
参考答案:1.D 2.C 3.C 4.C 5.5
6.提示:利用角角边或角边角证明△ADC≌△ABC.
12.2 三角形全等的判定(3)
教学目标
知识与技能
探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.
过程与方法
经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.
情感态度价值观
敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.
教学重点
理解,掌握三角形全等的条件:“ASA”“AAS”.
教学难点
探究出“ASA”“AAS”以及它们的应用.
教学过程(师生活动)
设计理念
创设情境
1.复习尺规作图
(1)作线段AB等于已知线段a,
(2)作∠ABC,等于已知∠α
2.我们已经知道的判定三角形全等的方法有哪些?
除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢?今天我们就来探究三角形全等的另一些条件。
复习旧知,为探究“ASA”中的作△A'B'C'作好知识铺垫,让学生在知识上做好衔接.
复习判别两个三角形全等的两个条件,提出判别全等的新问题,激发学生探究的欲望,提高学习的积极性.
探究新知
探究4:
1.先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即两角和它们的夹边对应相等).
学生先自己独立思考,动手画一画。
在画的过程中若遇到不能解决的问题.可小组合作交流解决.
2.把画好的△A'B'C'剪下,放到△ABC上,看看它们是否全等.
结论:两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”).
注意:“边”必须是“两角的夹边”.
例题讲解:
例3 如图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.
[分析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.
证明:在△ADC和△AEB中
所以△ADC≌△AEB(ASA)
所以AD=AE.
例4 在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
结论:两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”).
再次探究:
(1)三角对应相等的两个三角形全等吗?
引导学生通过“画两个三角对应相等的三角形”,看是否一定全等,或“用两个同一形状但大小不同的三角板”等等方法来探究说明.
结论:三个角对应相等的两个三角形不一定全等.
(2)现在为止,判定两个三角形全等我们已有了哪些方法?
结论:SSS SAS ASA AAS
让学生独立尝试画△A'B'C'.目的是给学生独立思考、自主探究的时间,培养独立面对问题的勇气.并在独立作图过程中,提高分析、作图能力,获得“ASA”的初步感知.
保证作图的正确性,这是探究出正确规律的前提.
留给学生较充分的独立思考、探究的时间,在探究过程中,提高逻辑推理能力.
引导学生先确定探究的思路与方法,进一步培养理性思维.
也为学生提供创新的空间与可能.
小结与作业
小结提高
我们有五种判定三角形全等的方法:
1.全等三角形的定义
2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)
推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.
让学生各抒己见,积极地在知识、学习方法、习惯等方面加以小结,以培养反思的习惯,培养理性思维.
巩固练习
教科书第41页,练习1、2.
布置作业
1.必做题:
2.选做题: