高二数学试题
2023.7
本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,第I卷1一3页,第Ⅱ卷4一6
页,共150分,测试时间120分钟.
注意事项:
选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改
吵
动,用橡皮擦干净后,再选涂其它答案,不能答在测试卷上
世
第I卷选择题(共60分)
一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项
是符合要求的.)
1.若集合M=(10g3<-1,N=(x3≥专,则MnN-
拟
A-1Kx<》
Bzl-1<<)
C<)
D.(zl0<
f1十l0g2(2-x),x<1,
2.设函数f(x)=
则f(-2)十∫(log26)=
2x,x≥1,
A12
B.9
C.6
D.3
拆
3.“a=一1”是“f(x)=ln(x2十1十ax)为奇函数”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
高二数学试题第1页(共6页)
4.设a=ea7,b=3a8,c=l0g3e,则a,b,c的大小关系为
A.aB.cC.cKaD.b5.若等比数列{a.}的前n项和S.=2n+1十m,则实数m=
A.2
B.1
C.-2
D.-1
6.定义在R上的阀函数f(x)满足f(-x+2)=f(x+2),且f1)=青,则f(2023)的值为
A-2
B.-1
c-
n青
7.随着国家对中小学“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社
会的广泛关注.某教育时报为研究“支持增加中学生体育锻炼时间的政策是否与性别有
关”,从某校男女生中各随机抽取80名学生进行问卷调查,得到如下数据(10≤m≤20,
∈N*):
支持
不支持
男生
70-m
10+m
女生
50+m
30-m
通过计算有95%以上的把握认为“支持增加中学生体育锻炼时间的政策与性别有关”,则
在这被调查的80名女生中支持增加中学生体育锻炼时间的人数的最小值为
附:K2=
n(ad-bc)2
a+b)(c+d)(a+c)(6+d其中n=a+6十c+d.
P(K2≥ko)
0.100
0.050
0.010
0.005
0.001
ko
2.706
3.841
6.635
7.879
10.828
A.15
B.65
c.16
D.66
&任给两个正数r,使得不等式。立一x十ly0恒成立,则实数a的取值范围是
A.-esa<
B.a≥-e
≤a0
D.a≥-l
高二数学试题第2页(共6页)高二数学试题参考答案
(②)函数y一f))子在03]止有两个零点即-子在0,]上有两个不等的实根
…7分
一、选择题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项
即x2十a.x十2=0在(0,3]上有两个不等的实根,…
…8分
是符合要求的.)
令h(x)=x2十ax十2,
1.D2.B3.A4.C5.C6.D7.D8.A
h(0)>0
二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合
h(3)≥0
题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)
则a2一8>0,……
…10分
9.BCD 10.ABD 11.ACD 12.AD
三、填空题(本题共4小题,每小题5分,共20分)】
0-g<3
18号
14.-315.-116.29,2022
解得-号…12分
四、解答题(本题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.)
19.设等差数列的首项为a1,公差为d,
17.(1)由3x∈[一1,4],使得不等式x2一4x一m>0成立,
由题意
2a1+10d=12
所以<(x2-4x)mx…2分
9(a1+4d)=45
解得向1
,所以an=1…2分
d=1
因为二次函数y=x2一4x在[一1,2]上单调递减,在[2,4]上单调递增,
a6i+a6:+…+a6.-2n-131+
4①
且y-1=(-1)2+4=5y-4=-4X4=0,
所以,当x∈[-1,4]时,ymx=5,…4分
当n≥2时,a161十a6:十+a.16.1=}(2n-3)3+
4②,…3分
所以,A={mm<5},…5分
①-②可得,anbn=n·3",am=n,所以bn=3”,…5分
(2)由x2-(a十lna)x十alna>0可得(x-lna)(x-a)>0.…6分
当n=1时,a1b1=b1=3适合bn=3”,
设fx)=x-1nr,f'(x)=1-1=二1=0>x=1
所以b咖=3”…6分
xx
x∈(0,1),f'(x)<0,f(x)递减,x∈(1,十o∞),f(x)>0,f(x)递增,
(8由可得为有数时d分中2
f(x)≥f(1)=1,所以x>lnx,所以a>lna…7分
刃为偶数时,Gn=bn=3”.…8分
从而B={xxa},…8分
Tn=c1十c2十c3十c4十…十c2m-1十c2n
因为x∈A是x∈B的充分条件,则A二B,
=(c1十cg十c5十…十c2m-1)+(c2十c4十c6十…十c2n)
则lna≥5,即a≥e5;
实数a的取值范围是[5,十O∞).…10分
2-+-1+11
1
1
1
一3+3-5+5-7++2m-2m+)+(32+3+3++32)
18.(1)因为f(x)在区间[1,2]上单调递减,所以f(x)≤0在区间[1,2]恒成立.…1分
…10分
即)=二12+2a+1≤0区间[1,2]恒成立.…2分
1
,9(1-9")
(x2+1)2
=21-2m+)
1-9
-x2+2ar十1≤0即2a≤-1在[1,2]上恒成立,…3分
n,9+19
=2m+1+88
…12分
易知y=工-1在[1,2]上单调递增…4分
20.(1)f(x)=(x十1)ex一a,因为x=0是f(.x)的极值点,…1分
所以f'(0)=1一a=0,所以a=1,…2分
x=1时,ymin=0.所以2a≤0,即a≤0.…6分
所以f'(x)=(x+1)er-(x+1)=(x+1)(e-1)
高二数学试题答案第1页(共4页)
高二数学试题答案第2页(共4页)