人教版九年级上册数学22.3实际问题与二次函数 同步练习(含答案)

文档属性

名称 人教版九年级上册数学22.3实际问题与二次函数 同步练习(含答案)
格式 docx
文件大小 223.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2023-07-12 23:36:40

图片预览

文档简介

人教版九年级上册数学22.3实际问题与二次函数同步练习
一、单选题
1.共享单车为市民出行带来了方便,某单车公司第一个月投放辆单车,计划第三个月投放单车辆,若第二个月的增长率是,第三个月的增长率是第二个月的两倍,那么与的函数关系是 ( )
A. B.
C. D.
2.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为( )
A.35元 B.36元 C.37元 D.36或37元
3.抛物线与x轴交于A、B两点,A点在B点左侧,与y轴交于点C.若点E在x轴上,点P在抛物线上,且以A、C、E、P为顶点的四边形是平行四边形,则符合条件的点E有(   )
A.1个 B.2个 C.3个 D.4个
4.飞机着陆后滑行的距离(单位:)与滑行的时间(单位:)的函数解析式是,那么飞机着陆后滑行多长时间才能停下来.(   )
A. B. C. D.
5.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,年市政府已投资亿人民币,若每年投资的增长率相同,预计年投资额达到亿元人民币,设每年投资的增长率为,则可得( )
A. B. C. D.
6.如图,若被击打的小球飞行高度(单位:与飞行时间(单位:具有函数关系为,则小球从飞出到落地的所用时间为  
A. B. C. D.
7.如图是抛物线型拱桥,当拱顶离水面时,水面宽.若水面再下降,水面宽度为( ).
A. B. C. D.
8.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为( )
A.0.5米 B.米 C.米 D.0.85米
二、填空题
9.拱桥呈抛物线形,其函数关系式为,当拱桥下水位线在位置时,水面宽为,这时水面离桥拱顶端的高度是____________________.
10.半径是2的圆,如果半径增加x时,增加的面积s与x之间的关系表达式为__________.
11.如图,用一段长为10米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园,设为米,则菜园的面积(平方米)与(米)的关系式为______.(不要求写出自变量的取值范围)
12.一个涵洞成抛物线形,它的截面如图,当水面宽AB=1.6米时,涵洞顶点与水面的距离为2.4m.涵洞所在抛物线的解析式是_____________.
13.足球被从地面上踢起,它距地面的高度h(m)可用公式h=-4.9t2+19.6t来表示,其中t(s)表示足球被踢出后经过的时间,则球在______s后落地.
14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度(单位:)与它距离喷头的水平距离(单位:)之间满足函数关系式,喷出水珠的最大高度是______.
15.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为___________元.
16.如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等.小强骑自行车从桥的一端0沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需_____________秒.
三、解答题
17.某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.
(1)求今年这款消毒洗衣液每瓶进价是多少元;
(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?
18.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.
(1)设计一个使花园面积最大的方案,并求出其最大面积;
(2)在花园面积最大的条件下,A,B两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?
19.国庆假期期间,某酒店有20个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,酒店需对每个房间每天支出20元的各种费用,设每间房间定价x元.
(1)每天有游客居住的房间数为__________(用含x的代数式表示);
(2)当每间房价为多少元时,酒店当天的利润为1800元?
(3)当每间房价定为多少元时,酒店的利润m(元)最大,最大利润是多少?
20.如图是某隧道截面示意图,它是由抛物线和长方形构成,已知米,米,抛物线顶点到地面的垂直距离为10米,以所在直线为轴,以所在直线为轴建立直角坐标系,
(1)求抛物线的解析式;
(2)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4米,最高处与地面距离为6米,隧道内设双向行车道,双向行车道间隔距离为2米,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于米,才能安全通行,问这辆特殊货车能否安全通过隧道?
参考答案:
1.A
2.C
3.D
4.B
5.C
6.B
7.D
8.A
9.
10.
11.y=-2x2+10x
12.
13.4
14.3
15.39
16.46
17.(1)今年这款消毒洗衣液每瓶进价是24元;
(2)当这款消毒洗衣液每瓶的售价定为33元时,这款洗衣液每周的销售利润最大,最大利润是8100元.
18.(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米
(2)最多可以购买1400株牡丹
19.(1)
(2)120元或200元
(3)当每间房价定为160元,宾馆的利润w最大,为1960元
20.(1)
(2)这辆特殊货车不能安全通过隧道