中小学教育资源及组卷应用平台
高考物理浙江卷(1月)3年(2021-2023)真题汇编-解答题
一、解答题
1.(2023·浙江·高考真题)某探究小组设计了一个报警装置,其原理如图所示。在竖直放置的圆柱形容器内用面积、质量的活塞密封一定质量的理想气体,活塞能无摩擦滑动。开始时气体处于温度、活塞与容器底的距离的状态A。环境温度升高时容器内气体被加热,活塞缓慢上升恰好到达容器内的卡口处,此时气体达到状态B。活塞保持不动,气体被继续加热至温度的状态C时触动报警器。从状态A到状态C的过程中气体内能增加了。取大气压,求气体。
(1)在状态B的温度;
(2)在状态C的压强;
(3)由状态A到状态C过程中从外界吸收热量Q。
2.(2023·浙江·高考真题)一游戏装置竖直截面如图所示,该装置由固定在水平地面上倾角的直轨道、螺旋圆形轨道,倾角的直轨道、水平直轨道组成,除段外各段轨道均光滑,且各处平滑连接。螺旋圆形轨道与轨道、相切于处.凹槽底面水平光滑,上面放有一无动力摆渡车,并紧靠在竖直侧壁处,摆渡车上表面与直轨道下、平台位于同一水平面。已知螺旋圆形轨道半径,B点高度为,长度,长度,摆渡车长度、质量。将一质量也为的滑块从倾斜轨道上高度处静止释放,滑块在段运动时的阻力为其重力的0.2倍。(摆渡车碰到竖直侧壁立即静止,滑块视为质点,不计空气阻力,,)
(1)求滑块过C点的速度大小和轨道对滑块的作用力大小;
(2)摆渡车碰到前,滑块恰好不脱离摆渡车,求滑块与摆渡车之间的动摩擦因数;
(3)在(2)的条件下,求滑块从G到J所用的时间。
3.(2023·浙江·高考真题)如图1所示,刚性导体线框由长为L、质量均为m的两根竖杆,与长为的两轻质横杆组成,且。线框通有恒定电流,可以绕其中心竖直轴转动。以线框中心O为原点、转轴为z轴建立直角坐标系,在y轴上距离O为a处,固定放置一半径远小于a,面积为S、电阻为R的小圆环,其平面垂直于y轴。在外力作用下,通电线框绕转轴以角速度匀速转动,当线框平面与平面重合时为计时零点,圆环处的磁感应强度的y分量与时间的近似关系如图2所示,图中已知。
(1)求0到时间内,流过圆环横截面的电荷量q;
(2)沿y轴正方向看以逆时针为电流正方向,在时间内,求圆环中的电流与时间的关系;
(3)求圆环中电流的有效值;
(4)当撤去外力,线框将缓慢减速,经时间角速度减小量为,设线框与圆环的能量转换效率为k,求的值(当,有)。
4.(2023·浙江·高考真题)探究离子源发射速度大小和方向分布的原理如图所示。x轴上方存在垂直平面向外、磁感应强度大小为B的匀强磁场。x轴下方的分析器由两块相距为d、长度足够的平行金属薄板M和N组成,其中位于x轴的M板中心有一小孔C(孔径忽略不计),N板连接电流表后接地。位于坐标原点O的离子源能发射质量为m、电荷量为q的正离子,其速度方向与y轴夹角最大值为;且各个方向均有速度大小连续分布在和之间的离子射出。已知速度大小为、沿y轴正方向射出的离子经磁场偏转后恰好垂直x轴射入孔C。未能射入孔C的其它离子被分析器的接地外罩屏蔽(图中没有画出)。不计离子的重力及相互作用,不考虑离子间的碰撞。
(1)求孔C所处位置的坐标;
(2)求离子打在N板上区域的长度L;
(3)若在N与M板之间加载电压,调节其大小,求电流表示数刚为0时的电压;
(4)若将分析器沿着x轴平移,调节加载在N与M板之间的电压,求电流表示数刚为0时的电压与孔C位置坐标x之间关系式。
5.(2022·浙江·统考高考真题)第24届冬奥会将在我国举办。钢架雪车比赛的一段赛道如图1所示,长12m水平直道AB与长20m的倾斜直道BC在B点平滑连接,斜道与水平面的夹角为15°。运动员从A点由静止出发,推着雪车匀加速到B点时速度大小为8m/s,紧接着快速俯卧到车上沿BC匀加速下滑(图2所示),到C点共用时5.0s。若雪车(包括运动员)可视为质点,始终在冰面上运动,其总质量为110kg,sin15°=0.26,求雪车(包括运动员)
(1)在直道AB上的加速度大小;
(2)过C点的速度大小;
(3)在斜道BC上运动时受到的阻力大小。
6.(2022·浙江·统考高考真题)如图所示,处于竖直平面内的一探究装置,由倾角=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上。已知可视为质点的滑块质量m=0.1kg,轨道BCD和DEF的半径R=0.15m,轨道AB长度,滑块与轨道FG间的动摩擦因数,滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8。滑块开始时均从轨道AB上某点静止释放,()
(1)若释放点距B点的长度l=0.7m,求滑块到最低点C时轨道对其支持力FN的大小;
(2)设释放点距B点的长度为,滑块第一次经F点时的速度v与之间的关系式;
(3)若滑块最终静止在轨道FG的中点,求释放点距B点长度的值。
7.(2022·浙江·统考高考真题)如图所示,水平固定一半径r=0.2m的金属圆环,长均为r,电阻均为R0的两金属棒沿直径放置,其中一端与圆环接触良好,另一端固定在过圆心的导电竖直转轴OO′上,并随轴以角速度=600rad/s匀速转动,圆环内左半圆均存在磁感应强度大小为B1的匀强磁场。圆环边缘、与转轴良好接触的电刷分别与间距l1的水平放置的平行金属轨道相连,轨道间接有电容C=0.09F的电容器,通过单刀双掷开关S可分别与接线柱1、2相连。电容器左侧宽度也为l1、长度为l2、磁感应强度大小为B2的匀强磁场区域。在磁场区域内靠近左侧边缘处垂直轨道放置金属棒ab,磁场区域外有间距也为l1的绝缘轨道与金属轨道平滑连接,在绝缘轨道的水平段上放置“[”形金属框fcde。棒ab长度和“[”形框的宽度也均为l1、质量均为m=0.01kg,de与cf长度均为l3=0.08m,已知l1=0.25m,l2=0.068m,B1=B2=1T、方向均为竖直向上;棒ab和“[”形框的cd边的电阻均为R=0.1,除已给电阻外其他电阻不计,轨道均光滑,棒ab与轨道接触良好且运动过程中始终与轨道垂直。开始时开关S和接线柱1接通,待电容器充电完毕后,将S从1拨到2,电容器放电,棒ab被弹出磁场后与“[”形框粘在一起形成闭合框abcd,此时将S与2断开,已知框abcd在倾斜轨道上重心上升0.2m后返回进入磁场。
(1)求电容器充电完毕后所带的电荷量Q,哪个极板(M或N)带正电?
(2)求电容器释放的电荷量;
(3)求框abcd进入磁场后,ab边与磁场区域左边界的最大距离x。
8.(2022·浙江·统考高考真题)如图为研究光电效应的装置示意图,该装置可用于分析光子的信息。在xOy平面(纸面)内,垂直纸面的金属薄板M、N与y轴平行放置,板N中间有一小孔O。有一由x轴、y轴和以O为圆心、圆心角为90°的半径不同的两条圆弧所围的区域Ⅰ,整个区域Ⅰ内存在大小可调、方向垂直纸面向里的匀强电场和磁感应强度大小恒为B1、磁感线与圆弧平行且逆时针方向的磁场。区域Ⅰ右侧还有一左边界与y轴平行且相距为l、下边界与x轴重合的匀强磁场区域Ⅱ,其宽度为a,长度足够长,其中的磁场方向垂直纸面向里,磁感应强度大小可调。光电子从板M逸出后经极板间电压U加速(板间电场视为匀强电场),调节区域Ⅰ的电场强度和区域Ⅱ的磁感应强度,使电子恰好打在坐标为(a+2l,0)的点上,被置于该处的探测器接收。已知电子质量为m、电荷量为e,板M的逸出功为W0,普朗克常量为h。忽略电子的重力及电子间的作用力。当频率为ν的光照射板M时有光电子逸出,
(1)求逸出光电子的最大初动能Ekm,并求光电子从O点射入区域Ⅰ时的速度v0的大小范围;
(2)若区域Ⅰ的电场强度大小,区域Ⅱ的磁感应强度大小,求被探测到的电子刚从板M逸出时速度vM的大小及与x轴的夹角;
(3)为了使从O点以各种大小和方向的速度射向区域Ⅰ的电子都能被探测到,需要调节区域Ⅰ的电场强度E和区域Ⅱ的磁感应强度B2,求E的最大值和B2的最大值。
9.(2021·浙江·统考高考真题)如图所示,质量m=2kg的滑块以v0=16m/s的初速度沿倾角θ=37°的斜面上滑,经t=2s滑行到最高点。然后,滑块返回到出发点。已知sin37°=0.6,cos37°=0.8,求滑块
(1)最大位移值x;
(2)与斜面间的动摩擦因数;
(3)从最高点返回到出发点的过程中重力的平均功率P。
10.(2021·浙江·统考高考真题)如图所示,竖直平面内由倾角α=60°的斜面轨道AB、半径均为R的半圆形细圆管轨道BCDE和圆周细圆管轨道EFG构成一游戏装置固定于地面,B、E两处轨道平滑连接,轨道所在平面与竖直墙面垂直。轨道出口处G和圆心O2的连线,以及O2、E、O1和B等四点连成的直线与水平线间的夹角均为θ=30°,G点与竖直墙面的距离。现将质量为m的小球从斜面的某高度h处静止释放。小球只有与竖直墙面间的碰撞可视为弹性碰撞,不计小球大小和所受阻力。
(1)若释放处高度h=h0,当小球第一次运动到圆管最低点C时,求速度大小vc及在此过程中所受合力的冲量的大小和方向;
(2)求小球在圆管内与圆心O1点等高的D点所受弹力FN与h的关系式;
(3)若小球释放后能从原路返回到出发点,高度h应该满足什么条件?
11.(2021·浙江·统考高考真题)嫦娥五号成功实现月球着陆和返回,鼓舞人心。小明知道月球上没有空气,无法靠降落伞减速降落,于是设计了一种新型着陆装置。如图所示,该装置由船舱、间距为l的平行导轨、产生垂直船舱导轨平面的磁感应强度大小为B的匀强磁场的磁体和“∧”型刚性线框组成,“∧”型线框ab边可沿导轨滑动并接触良好。船舱、导轨和磁体固定在一起,总质量为m1整个装置竖直着陆到月球表面前瞬间的速度大小为v0,接触月球表面后线框速度立即变为零。经过减速,在导轨下方缓冲弹簧接触月球表面前船舱已可视为匀速。已知船舱电阻为3r,“∧”型线框的质量为m2,其7条边的边长均为l,电阻均为r;月球表面的重力加速度为g/6。整个运动过程中只有ab边在磁场中,线框与月球表面绝缘,不计导轨电阻和摩擦阻力。
(1)求着陆装置接触到月球表面后瞬间线框ab边产生的电动势E;
(2)通过画等效电路图,求着陆装置接触到月球表面后瞬间流过ab型线框的电流I0;
(3)求船舱匀速运动时的速度大小v;
(4)同桌小张认为在磁场上方、两导轨之间连接一个电容为C的电容器,在着陆减速过程中还可以回收部分能量,在其他条件均不变的情况下,求船舱匀速运动时的速度大小和此时电容器所带电荷量q。
12.(2021·浙江·统考高考真题)在芯片制造过程中,离子注入是其中一道重要的工序。如图所示是离子注入工作原理示意图,离子经加速后沿水平方向进入速度选择器,然后通过磁分析器,选择出特定比荷的离子,经偏转系统后注入处在水平面内的晶圆(硅片)。速度选择器、磁分析器和偏转系统中的匀强磁场的磁感应强度大小均为B,方向均垂直纸面向外;速度选择器和偏转系统中的匀强电场场强大小均为E,方向分别为竖直向上和垂直纸面向外。磁分析器截面是内外半径分别为R1和R2的四分之一圆环,其两端中心位置M和N处各有一个小孔;偏转系统中电场和磁场的分布区域是同一边长为L的正方体,其偏转系统的底面与晶圆所在水平面平行,间距也为L。当偏转系统不加电场及磁场时,离子恰好竖直注入到晶圆上的O点(即图中坐标原点,x轴垂直纸面向外)。整个系统置于真空中,不计离子重力,打在晶圆上的离子,经过电场和磁场偏转的角度都很小。当α很小时,有,。求:
(1)离子通过速度选择器后的速度大小v和磁分析器选择出来离子的比荷;
(2)偏转系统仅加电场时离子注入晶圆的位置,用坐标(x,y)表示;
(3)偏转系统仅加磁场时离子注入晶圆的位置,用坐标(x,y)表示;
(4)偏转系统同时加上电场和磁场时离子注入晶圆的位置,用坐标(x,y)表示,并说明理由。
参考答案:
1.(1)330K;(2);(3)
【详解】(1)根据题意可知,气体由状态A变化到状态B的过程中,封闭气体的压强不变,则有
解得
(2)从状态A到状态B的过程中,活塞缓慢上升,则
解得
根据题意可知,气体由状态B变化到状态C的过程中,气体的体积不变,则有
解得
(3)根据题意可知,从状态A到状态C的过程中气体对外做功为
由热力学第一定律有
解得
2.(1),;(2);(3)
【详解】(1)滑块从静止释放到C点过程,根据动能定理可得
解得
滑块过C点时,根据牛顿第二定律可得
解得
(2)设滑块刚滑上摆渡车时的速度大小为,从静止释放到G点过程,根据动能定理可得
解得
摆渡车碰到前,滑块恰好不脱离摆渡车,说明滑块到达摆渡车右端时刚好与摆渡车共速,以滑块和摆渡车为系统,根据系统动量守恒可得
解得
根据能量守恒可得
解得
(3)滑块从滑上摆渡车到与摆渡车共速过程,滑块的加速度大小为
所用时间为
此过程滑块通过的位移为
滑块与摆渡车共速后,滑块与摆渡车一起做匀速直线运动,该过程所用时间为
则滑块从G到J所用的时间为
3.(1);(2);(3);(4)
【详解】(1)由法拉第电磁感应定律
由闭合电路欧姆定律
由电流定义式
联立可得
(2)在时
在时
(3)从能量角度
解得
(4)由能量传递
化简可得
即
解得
4.(1);(2);(3);(4)当时,
【详解】(1)速度大小为、沿y轴正方向射出的离子经磁场偏转后轨迹如图
由洛伦兹力提供向心力
解得半径
孔C所处位置的坐标
(2)速度大小为的离子进入磁场后,由洛伦兹力提供向心力
解得半径
若要能在C点入射,则由几何关系可得
解得
如图
由几何关系可得
(3)不管从何角度发射
由(2)可得
根据动力学公式可得
,
联立解得
(4)孔C位置坐标x
其中
联立可得
,
解得
在此范围内,和(3)相同,只与相关,可得
解得
根据动力学公式可得
,
解得
5.(1);(2)12m/s;(3)66N
【详解】(1)AB段
解得
(2)AB段
解得
BC段
过C点的速度大小
(3)在BC段有牛顿第二定律
解得
6.(1)7N;(2) ();(3),,
【详解】(1)滑块释放运动到C点过程,由动能定理
经过C点时
解得
(2)能过最高点时,则能到F点,则恰到最高点时
解得
而要保证滑块能到达F点,必须要保证它能到达DEF最高点,当小球恰好到达DEF最高点时,由动能定理
可解得
则要保证小球能到F点,,带入可得
(3)设全过程摩擦力对滑块做功为第一次到达中点时做功的n倍,则n=1,3,5,……
解得
n=1,3,5, ……
又因为
,
当时,,当时,,当时,,满足要求。
即若滑块最终静止在轨道FG的中点,释放点距B点长度的值可能为,, 。
7.(1)0.54C;M板;(2)0.16C;(3)0.14m
【详解】(1)开关S和接线柱1接通,电容器充电充电过程,对绕转轴OO′转动的棒由右手定则可知其动生电源的电流沿径向向外,即边缘为电源正极,圆心为负极,则M板充正电;
根据法拉第电磁感应定律可知
则电容器的电量为
(2)电容器放电过程有
棒ab被弹出磁场后与“[”形框粘在一起的过程有
棒的上滑过程有
联立解得
(3)设导体框在磁场中减速滑行的总路程为,由动量定理
可得
匀速运动距离为
则
8.(1);;(2);;(3);
【详解】(1)光电效应方程,逸出光电子的最大初动能
(2)速度选择器
如图所示,几何关系
(3)由上述表达式可得
由
而v0sinθ等于光电子在板逸出时沿y轴的分速度,则有
即
联立可得B2的最大值
9.(1)16m;(2)0.25;(3)67.9W
【详解】(1)小车向上做匀减速直线运动,有
得
(2)加速度
上滑过程
得
(3)下滑过程
由运动学公式
重力的平均功率
10.(1),,水平向左;(2)(h≥R);(3)或
【详解】(1)机械能守恒
解得
动量定理
方向水平向左
(2)机械能守恒
牛顿第二定律
解得
满足的条件
(3)第1种情况:不滑离轨道原路返回,条件是
第2种情况:与墙面垂直碰撞后原路返回,在进入G之前是平抛运动
其中,,则
得
机械能守恒
h满足的条件
11.(1)Blv0;(2);(3);(4),
【详解】(1)导体切割磁感线,电动势
(2)等效电路图如图
并联总电阻
电流
(3)匀速运动时线框受到安培力
根据牛顿第三定律,质量为m1的部分受力F=FA,方向竖直向上,匀速条件
得
(4)匀速运动时电容器不充放电,满足
电容器两端电压为
电荷量为
12.(1),;(2)(,0);(3)(0,);(4)见解析
【详解】(1)通过速度选择器离子的速度
从磁分析器中心孔N射出离子的运动半径为
由得
(2)经过电场后,离子在x方向偏转的距离
离开电场后,离子在x方向偏移的距离
位置坐标为(,0)
(3)离子进入磁场后做圆周运动半径
经过磁场后,离子在y方向偏转距离
离开磁场后,离子在y方向偏移距离
则
位置坐标为(0,)
(4)注入晶圆的位置坐标为(,),电场引起的速度增量对y方向的运动不产生影响。
试卷第1页,共3页
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)