中小学教育资源及组卷应用平台
高考物理湖北卷(6月)3年(2021-2023)真题汇编-电磁学
一、单选题
1.(2023·湖北·统考高考真题)近场通信(NFC)器件应用电磁感应原理进行通讯,其天线类似一个压平的线圈,线圈尺寸从内到外逐渐变大。如图所示,一正方形NFC线圈共3匝,其边长分别为、和,图中线圈外线接入内部芯片时与内部线圈绝缘。若匀强磁场垂直通过此线圈,磁感应强度变化率为,则线圈产生的感应电动势最接近( )
A. B. C. D.
2.(2023·湖北·统考高考真题)在正点电荷Q产生的电场中有M、N两点,其电势分别为、,电场强度大小分别为、。下列说法正确的是( )
A.若,则M点到电荷Q的距离比N点的远
B.若,则M点到电荷Q的距离比N点的近
C.若把带负电的试探电荷从M点移到N点,电场力做正功,则
D.若把带正电的试探电荷从M点移到N点,电场力做负功,则
3.(2022·湖北·统考高考真题)密立根油滴实验装置如图所示,两块水平放置的金属板分别与电源的正负极相接,板间产生匀强电场。用一个喷雾器把密度相同的许多油滴从上板中间的小孔喷入电场,油滴从喷口喷出时由于摩擦而带电。金属板间电势差为U时,电荷量为q、半径为r的球状油滴在板间保持静止。若仅将金属板间电势差调整为2U,则在板间能保持静止的球状油滴所带电荷量和半径可以为( )
A.q,r B.2q,r C.2q,2r D.4q,2r
4.(2021·湖北·统考高考真题)如图所示,理想变压器原线圈接入电压恒定的正弦交流电,副线圈接入最大阻值为2R的滑动变阻器和阻值为R的定值电阻。在变阻器滑片从a端向b端缓慢移动的过程中( )
A.电流表A1示数减小 B.电流表A2示数增大
C.原线圈输入功率先增大后减小 D.定值电阻R消耗的功率先减小后增大
二、多选题
5.(2023·湖北·统考高考真题)一带正电微粒从静止开始经电压加速后,射入水平放置的平行板电容器,极板间电压为。微粒射入时紧靠下极板边缘,速度方向与极板夹角为,微粒运动轨迹的最高点到极板左右两端的水平距离分别为和L,到两极板距离均为d,如图所示。忽略边缘效应,不计重力。下列说法正确的是( )
A.
B.
C.微粒穿过电容器区域的偏转角度的正切值为2
D.仅改变微粒的质量或者电荷数量,微粒在电容器中的运动轨迹不变
6.(2022·湖北·统考高考真题)如图所示,两平行导轨在同一水平面内。一导体棒垂直放在导轨上,棒与导轨间的动摩擦因数恒定。整个装置置于匀强磁场中,磁感应强度大小恒定,方向与金属棒垂直、与水平向右方向的夹角θ可调。导体棒沿导轨向右运动,现给导体棒通以图示方向的恒定电流,适当调整磁场方向,可以使导体棒沿导轨做匀加速运动或匀减速运动。已知导体棒加速时,加速度的最大值为g;减速时,加速度的最大值为g,其中g为重力加速度大小。下列说法正确的是( )
A.棒与导轨间的动摩擦因数为
B.棒与导轨间的动摩擦因数为
C.加速阶段加速度大小最大时,磁场方向斜向下,θ=60°
D.减速阶段加速度大小最大时,磁场方向斜向上,θ=150°
7.(2022·湖北·统考高考真题)如图所示,一带电粒子以初速度v0沿x轴正方向从坐标原点О射入,并经过点P(a>0,b>0)。若上述过程仅由方向平行于y轴的匀强电场实现,粒子从О到Р运动的时间为t1,到达Р点的动能为Ek1。若上述过程仅由方向垂直于纸面的匀强磁场实现,粒子从O到Р运动的时间为t2,到达Р点的动能为Ek2。下列关系式正确的是·( )
A.t1 t2
C.Ek1Ek2
8.(2022·湖北·统考高考真题)近年来,基于变压器原理的无线充电技术得到了广泛应用,其简化的充电原理图如图所示。发射线圈的输入电压为220V、匝数为1100匝,接收线圈的匝数为50匝。若工作状态下,穿过接收线圈的磁通量约为发射线圈的80%,忽略其它损耗,下列说法正确的是( )
A.接收线圈的输出电压约为8 V
B.接收线圈与发射线圈中电流之比约为22:1
C.发射线圈与接收线圈中交变电流的频率相同
D.穿过发射线圈的磁通量变化率与穿过接收线圈的相同
9.(2022·湖北·统考高考真题)在如图所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP成30°角。已知离子比荷为k,不计重力。若离子从Р点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )
A.kBL,0° B.kBL,0° C.kBL,60° D.2kBL,60°
10.(2021·湖北·统考高考真题)如图所示,一匀强电场E大小未知、方向水平向右。两根长度均为L的绝缘轻绳分别将小球M和N悬挂在电场中,悬点均为O。两小球质量均为m、带等量异号电荷,电荷量大小均为q(q>0)。平衡时两轻绳与竖直方向的夹角均为θ=45°。若仅将两小球的电荷量同时变为原来的2倍,两小球仍在原位置平衡。已知静电力常量为k,重力加速度大小为g,下列说法正确的是( )
A.M带正电荷 B.N带正电荷
C. D.
11.(2021·湖北·统考高考真题)关于电场,下列说法正确的是( )
A.电场是物质存在的一种形式
B.电场力一定对正电荷做正功
C.电场线是实际存在的线,反映电场强度的大小和方向
D.静电场的电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面
12.(2021·湖北·统考高考真题)一电中性微粒静止在垂直纸面向里的匀强磁场中,在某一时刻突然分裂成a、b和c三个微粒,a和b在磁场中做半径相等的匀速圆周运动,环绕方向如图所示,c未在图中标出。仅考虑磁场对带电微粒的作用力,下列说法正确的是( )
A.a带负电荷 B.b带正电荷
C.c带负电荷 D.a和b的动量大小一定相等
三、解答题
13.(2023·湖北·统考高考真题)如图所示,空间存在磁感应强度大小为B、垂直于xOy平面向里的匀强磁场。t = 0时刻,一带正电粒子甲从点P(2a,0)沿y轴正方向射入,第一次到达点O时与运动到该点的带正电粒子乙发生正碰。碰撞后,粒子甲的速度方向反向、大小变为碰前的3倍,粒子甲运动一个圆周时,粒子乙刚好运动了两个圆周。己知粒子甲的质量为m,两粒子所带电荷量均为q。假设所有碰撞均为弹性正碰,碰撞时间忽略不计,碰撞过程中不发生电荷转移,不考虑重力和两粒子间库仑力的影响。求:
(1)第一次碰撞前粒子甲的速度大小;
(2)粒子乙的质量和第一次碰撞后粒子乙的速度大小;
(3)时刻粒子甲、乙的位置坐标,及从第一次碰撞到的过程中粒子乙运动的路程。(本小问不要求写出计算过程,只写出答案即可)
14.(2022·湖北·统考高考真题)如图所示,高度足够的匀强磁场区域下边界水平、左右边界竖直,磁场方向垂直于纸面向里。正方形单匝线框abcd的边长L = 0.2m、回路电阻R = 1.6 × 10 - 3Ω、质量m = 0.2kg。线框平面与磁场方向垂直,线框的ad边与磁场左边界平齐,ab边与磁场下边界的距离也为L。现对线框施加与水平向右方向成θ = 45°角、大小为的恒力F,使其在图示竖直平面内由静止开始运动。从ab边进入磁场开始,在竖直方向线框做匀速运动;dc边进入磁场时,bc边恰好到达磁场右边界。重力加速度大小取g = 10m/s2,求:
(1)ab边进入磁场前,线框在水平方向和竖直方向的加速度大小;
(2)磁场的磁感应强度大小和线框进入磁场的整个过程中回路产生的焦耳热;
(3)磁场区域的水平宽度。
15.(2021·湖北·统考高考真题)如图(a)所示,两根不计电阻、间距为L的足够长平行光滑金属导轨,竖直固定在匀强磁场中,磁场方向垂直于导轨平面向里,磁感应强度大小为B。导轨上端串联非线性电子元件Z和阻值为R的电阻。元件Z的图像如图(b)所示,当流过元件Z的电流大于或等于时,电压稳定为Um。质量为m、不计电阻的金属棒可沿导轨运动,运动中金属棒始终水平且与导轨保持良好接触。忽略空气阻力及回路中的电流对原磁场的影响,重力加速度大小为g。为了方便计算,取,。以下计算结果只能选用m、g、B、L、R表示。
(1)闭合开关S。,由静止释放金属棒,求金属棒下落的最大速度v1;
(2)断开开关S,由静止释放金属棒,求金属棒下落的最大速度v2;
(3)先闭合开关S,由静止释放金属棒,金属棒达到最大速度后,再断开开关S。忽略回路中电流突变的时间,求S断开瞬间金属棒的加速度大小a。
参考答案:
1.B
【详解】根据法拉第电磁感应定律可知
故选B。
2.C
【详解】A.沿着电场线的方向电势降低,根据正点电荷产生的电场特点可知若
则M点到电荷Q的距离比N点的近,故A错误;
B.电场线的疏密程度表示电场强度的大小,根据正点电荷产生的电场特点可知若
则M点到电荷Q的距离比N点的远,故B错误;
C.若把带负电的试探电荷从M点移到N点,电场力做正功,则是逆着电场线运动,电势增加,故有
故C正确;
D.若把带正电的试探电荷从M点移到N点,电场力做负功,则是逆着电场线运动;根据正点电荷产生的电场特点可知
故D错误。
故选C。
3.D
【详解】初始状态下,液滴处于静止状态时,满足
即
AB.当电势差调整为2U时,若液滴的半径不变,则满足
可得
AB错误;
CD.当电势差调整为2U时,若液滴的半径变为2r时,则满足
可得
C错误,D正确。
故选D。
4.A
【分析】本题考查含理想变压器电路的动态分析。
【详解】AB.由于原线圈所接电压恒定,匝数比恒定,故变压器副线圈的输出电压恒定,变阻器的滑片从a端向b端缓慢移动的过程中,由数学知识可知,变压器副线圈所接的电阻值逐渐增大,则由欧姆定律得
可知副线圈的电流逐渐减小,由
可知变压器原线圈的电流I1也逐渐减小,故A正确,B错误;
C.原线圈的输入功率为
由于I1逐渐减小,则原线圈的输入功率逐渐减小,故C错误;
D.由于副线圈的电流逐渐减小,则定值电阻与变阻器右半部分并联的总电流减小,又与定值电阻并联的变阻器右半部分的电阻值减小,则由并联分流规律可知,流过定值电阻的电流逐渐减小,则由公式
可知,定值电阻R消耗的电功率逐渐减小,故D错误。
故选A。
5.BD
【详解】B.粒子在电容器中水平方向做匀速直线运动,竖直方向做匀变速直线直线运动,根据电场强度和电势差的关系及场强和电场力的关系可得
,
粒子射入电容器后的速度为,水平方向和竖直方向的分速度
,
从射入到运动到最高点由运动学关系
粒子射入电场时由动能定理可得
联立解得
B正确;
A.粒子从射入到运动到最高点由运动学可得
,
联立可得
A错误;
C.粒子穿过电容器时从最高点到穿出时由运动学可得
,
射入电容器到最高点有
解得
设粒子穿过电容器与水平的夹角为,则
粒子射入电场和水平的夹角为
C错误;
D.粒子射入到最高点的过程水平方向的位移为,竖直方向的位移为
联立
,,
解得
且
,
即解得
即粒子在运动到最高点的过程中水平和竖直位移均与电荷量和质量无关,最高点到射出电容器过程同理
,,
即轨迹不会变化,D正确。
故选BD。
6.BC
【详解】设磁场方向与水平方向夹角为θ1,θ1<90°;当导体棒加速且加速度最大时,合力向右最大,根据左手定则和受力分析可知安培力应该斜向右上方,磁场方向斜向右下方,此时有
令
根据数学知识可得
则有
同理磁场方向与水平方向夹角为θ2,θ2<90°,当导体棒减速,且加速度最大时,合力向左最大,根据左手定则和受力分析可知安培力应该斜向左下方,磁场方向斜向左上方,此时有
有
所以有
当加速或减速加速度分别最大时,不等式均取等于,联立可得
带入
可得α=30°,此时
加速阶段加速度大小最大时,磁场方向斜向右下方,有
减速阶段加速度大小最大时,磁场方向斜向左上方,有
故BC正确,AD错误。
故选BC。
7.AD
【详解】AB.该过程中由方向平行于y轴的匀强电场实现,此时粒子做类平抛运动,沿x轴正方向做匀速直线运动;当该过程仅由方向垂直于纸面的匀强磁场实现时,此时粒子做匀速圆周运动,沿x轴正方向分速度在减小,根据
可知
t1故A正确,B错误。
CD.该过程中由方向平行于y轴的匀强电场实现,此时粒子做类平抛运动,到达P点时速度大于v0;当该过程仅由方向垂直于纸面的匀强磁场实现时,此时粒子做匀速圆周运动,到达P点时速度等于v0,而根据
可知
Ek1>Ek2
故C错误,D正确。
故选AD。
8.AC
【详解】A.根据
可得接收线圈的输出电压约为U2=8V;
B.由于存在磁漏现象,电流比不再与匝数成反比,故B错误;
C.变压器是不改变其交变电流的频率的,故C正确;
D.由于穿过发射线圈的磁通量与穿过接收线圈的磁通量大小不相同,所以穿过发射线圈的磁通量变化率与穿过接收线圈的不相同,故D错误。
故选AC。
9.BC
【详解】若粒子通过下部分磁场直接到达P点,如图
根据几何关系则有
可得
根据对称性可知出射速度与SP成30°角向上,故出射方向与入射方向的夹角为θ=60°。
当粒子上下均经历一次时,如图
因为上下磁感应强度均为B,则根据对称性有
根据洛伦兹力提供向心力有
可得
此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
通过以上分析可知当粒子从下部分磁场射出时,需满足
(n=1,2,3……)
此时出射方向与入射方向的夹角为θ=60°;
当粒子从上部分磁场射出时,需满足
(n=1,2,3……)
此时出射方向与入射方向的夹角为θ=0°。
故可知BC正确,AD错误。
故选BC。
10.BC
【分析】本题考查库仑定律、受力分析以及共点力的平衡。
【详解】AB.由题图可知,对小球M受力分析如图(a)所示,对小球N受力分析如图(b)所示,由受力分析图可知小球M带负电,小球N带正电,故B正确,A错误;
CD.由几何关系可知,两小球之间的距离为
当两小球的电荷量为q时,由力的平衡条件得
两小球的电荷量同时变为原来的2倍后,由力的平衡条件得
整理解得
故C正确,D错误。
故选BC。
11.AD
【详解】A.电场是存在于电荷周围的一种特殊媒介物质,A正确;
B.如果正电荷的速度方向与电场力的夹角大于90°,则电场力做负功,等于90°电场力不做功,小于90°电场力做正功,B错误;
C.电场线是为了形象地描绘电场而人为引入的一簇曲线,该曲线的疏密程度反映场强的大小,C错误;
D.静电场的电场线在空间上与等势面垂直,且沿电场线的方向电势降低,即由高等势面指向低等势面,D正确。
故选AD。
12.BC
【详解】ABC.由左手定则可知, 粒子a、粒子b均带正电,电中性的微粒分裂的过程中,总的电荷量应保持不变,则粒子c应带负电,A错误,BC正确;
D.粒子在磁场中做匀速圆周运动时,洛伦兹力提供向心力,即
解得
由于粒子a与粒子b的质量、电荷量大小关系未知,则粒子a与粒子b的动量大小关系不确定,D错误。
故选BC。
13.(1);(2),;(3)甲(-6a,0),乙(0,0),67πa
【详解】(1)由题知,粒子甲从点P(2a,0)沿y轴正方向射入到达点O,则说明粒子甲的半径
r = a
根据
解得
(2)由题知,粒子甲运动一个圆周时,粒子乙刚好运动了两个圆周,则
T甲 = 2T乙
根据,有
则
粒子甲、乙碰撞过程,取竖直向下为正有
mv甲0+m乙v乙0= -mv甲1+m乙v乙1
解得
v乙0= -5v甲0,v乙1= 3v甲0
则第一次碰撞后粒子乙的速度大小为。
(3)已知在时,甲、乙粒子发生第一次碰撞且碰撞后有
v甲1= -3v甲0,v乙1= 3v甲0
则根据,可知此时乙粒子的运动半径为
可知在时,甲、乙粒子发生第二次碰撞,且甲、乙粒子发生第一次碰撞到第二次碰撞过程中乙粒子运动了2圈,此过程中乙粒子走过的路程为
S1= 6πa
且在第二次碰撞时有
mv甲1+m乙v乙1= mv甲2+m乙v乙2
解得
v甲2= v甲0,v乙2= -5v甲0
可知在时,甲、乙粒子发生第三次碰撞,且甲、乙粒子发生第二次碰撞到第三次碰撞过程中乙粒子运动了2圈,此过程中乙粒子走过的路程为
S2= 10πa
且在第三次碰撞时有
mv甲2+m乙v乙2= mv甲3+m乙v乙3
解得
v甲3= -3v甲0,v乙3= 3v甲0
依次类推
在时,甲、乙粒子发生第九次碰撞,且甲、乙粒子发生第八次碰撞到第九次碰撞过程中乙粒子运动了2圈,此过程中乙粒子走过的路程为
S8= 10πa
且在第九次碰撞时有
mv甲8+m乙v乙8= mv甲9+m乙v乙9
解得
v甲9=-3v甲0,v乙9= 3v甲0
在到过程中,甲粒子刚好运动半周,且甲粒子的运动半径为
r甲1 = 3a
则时甲粒子运动到P点即(-6a,0)处。
在到过程中,乙粒子刚好运动一周,则时乙粒子回到坐标原点,且此过程中乙粒子走过的路程为
S0 = 3πa
故整个过程中乙粒子走过总路程为
S = 4 × 6πa+4 × 10πa+3πa = 67πa
14.(1)ax = 20m/s2,ay = 10m/s2;(2)B = 0.2T,Q = 0.4J;(3)X = 1.1m
【详解】(1)ab边进入磁场前,对线框进行受力分析,在水平方向有
max = Fcosθ
代入数据有
ax = 20m/s2
在竖直方向有
may = Fsinθ - mg
代入数据有
ay = 10m/s2
(2)ab边进入磁场开始,ab边在竖直方向切割磁感线;ad边和bc边的上部分也开始进入磁场,且在水平方向切割磁感线。但ad和bc边的上部分产生的感应电动势相互抵消,则整个回路的电源为ab,根据右手定则可知回路的电流为adcba,则ab边进入磁场开始,ab边受到的安培力竖直向下,ad边的上部分受到的安培力水平向右,bc边的上部分受到的安培力水平向左,则ad边和bc边的上部分受到的安培力相互抵消,故线框abcd受到的安培力的合力为ab边受到的竖直向下的安培力。由题知,线框从ab边进入磁场开始,在竖直方向线框做匀速运动,有
Fsinθ - mg - BIL = 0
E = BLvy
vy2 = 2ayL
联立有
B = 0.2T
由题知,从ab边进入磁场开始,在竖直方向线框做匀速运动;dc边进入磁场时,bc边恰好到达磁场右边界。则线框进入磁场的整个过程中,线框受到的安培力为恒力,则有
Q = W安 = BILy
y = L
Fsinθ - mg = BIL
联立解得
Q = 0.4J
(3)线框从开始运动到进入磁场的整个过程中所用的时间为
vy = ayt1
L = vyt2
t = t1 + t2
联立解得
t = 0.3s
由(2)分析可知线框在水平方向一直做匀加速直线运动,则在水平方向有
则磁场区域的水平宽度
X = x + L = 1.1m
15.(1);(2);(3)
【分析】[关键能力]本题考 查法拉第电磁感应定律、闭合电路欧姆定律等知识,意在考查考生综合电磁学知识以及力学规律处理问题的能力。
[压轴题透析] 3第(1)问通过对金属棒的受力分析以及运动分析,求出当金属棒的加速度为零时的最大速度;第(2)问首先应分析比较第(1)问中的电流与图(b)中Z元件的电压达到最大时的电流大小关系,然后通过定值电阻表示出回路中的最大电流,进而求出金属棒的最大速度;第(3)问的关键在于求出开关断开瞬间回路中的电流,得出导体棒所受的安培力大小,再根据牛顿第二定律求出金属棒的加速度。
【详解】(1)闭合开关S,金属棒下落的过程中受竖直向下的重力、竖直向上的安培力作用,当重力与安培力大小相等时,金属棒的加速度为零,速度最大,则
由法拉第电磁感应定律得
由欧姆定律得
解得
(2)由第(1)问得
由于
断开开关S后,当金属棒的速度达到最大时,元件Z两端的电压恒为
此时定值电阻两端的电压为
回路中的电流为
又由欧姆定律得
解得
(3)开关S闭合,当金属棒的速度最大时,金属棒产生的感应电动势为
断开开关S的瞬间,元件Z两端的电压为
则定值电阻两端的电压为
电路中的电流为
金属棒受到的安培力为
对金属棒由牛顿第二定律得
解得
试卷第1页,共3页
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)