2022一2023学年下期期末联考
高二数学试题
(考试时间:120分钟
试卷满分:150分)
一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符
合题目要求的.)
1.已知集合A={x0A.[-1,4)
B.(0,1]
C.[-1,3)
D.[-1,2]
2.函数fx)=x-2x的图象在点(1,f(1)处的切线方程为
A.y=2x+3
食游5?.
B.y=-2x+1
C.y=2x-3
D.y=-2x-1t
3.北斗七星自古是我国人民辨别方向判断季节的重要依据,北斗七星分别为天枢、天璇、天玑、
天权、玉衡、开阳、摇光,其中玉衡最亮,天权最暗.一名天文爱好者从七颗星中随机选三颗进
行观测,则玉衡和天权都未被选中的概率为
好好过
天枢
2西:
玉衡
开阳
天权“
「
衡摇光呼婚
:年
天璇
天现
A.
BR贵
c身
D.
7
4.“lga>lgb”是“√a>√6”成立的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件;
5.设随机变量X~N(0,1),f(x)=P(X≥x),其中x>0,则f代-x)+f(x)的值为
A.0
1
.2
治,氵,度
C.1
D.(0,1)的不确定值
6.现有完全相同的甲,乙两个箱子(如下图),其中甲箱装有2个黑球和4个白球,乙箱装有2
个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中
随机摸出一球,则摸出的球是黑球的概率是
888
A号
B.
2
30
高二数学试题第1页(共4面)
7.代数式(x-1)(x-2)的展开式中的系数为家其学令兴六凉,
A.20
B.-20
C.10
D.-10
8.已知a=e3-o,l+lnb=e2-(a,beR),则ab=
A.2
B.3
C.e2
D.e
二、选择题(本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符
合题目要求的,全部选对得5分,部分选对的得2分,有选错的得0分.)
9.某服装公司对1-5月份的服装销量进行了统计,结果如下:
月份编号x
1
2
3
5
销量y(万件)
50
96
142
185
227
若y与x线性相关,其线性回归方程为y=x+7.1,则下列说法正确的是
n::
A.线性回归方程必过(3,140)
B.6=44.3.
C.相关系数r<0
D.6月份的服装销量一定为272.9万件
10.若)=lx+2-证在定义域上不单调,则实数6的值可能是
A.1
B.2
C.3
iD.49国
1山.通过随机询问相同数量的个同性圳的大学生在购买食物时是否石宫养说明,得知有名的男
大学生“不看”,有}的女大学4“不看”,若有9%的把握认为性别与是香看青养说明之间
有关,则调查的总人数可能为
n(ad-bc)2
附:=a+b(c+的(a+c(6+0其中n=a+6+c+d
弹有
0.10
.0.010
0.001
Xa
2.706
6.635
10.828
A.150
.B.170
2403C.190
D.210
12.已知a>0,b>0,且a+b=6,则下列不等式一定成立的是
A.(1+a)(1+b)≤16
g,B.√2a+1+Y26+3≤3+7
c.2->64
+京号
三、填空题(本题共4小题,每小题5分,共20分.)
13.将6本不同的书分成两堆,每堆至少两本,则不同的分堆方法共有
种
14.函数f八x)=-x(lnx-1)的最大值为
15.若命题“函数八x)=-x+x2-x无极值”为真命题,则实数m的取值范围是
16.已知函数八x)=
2x-1,>0若>名且)=),则名-的最小值是
2e+x,x≤0
高二数学试题第2页(共4面)2022—2023 学年下期期末联考
高二数学参考答案
一、选择题(本大题共 8小题,每小题 5分,共 40分.在每小题给出的四个选项中,只有
一项是符合题目要求的.)
题号 1 2 3 4 5 6 7 8
答案 A C D A C B A C
1.【答案】A
x21 (x 1)(x +1)0 1x1 B = {x∣ 1x1}【解析】由 ,即 ,解得 ,所以 ,所以
A∪B ={x∣ 1 x < 4}.故选A .
2.【答案】C
′
【解析】 f (x) = 4x 3 2 f ′(1) = 2 y = 2x 3, ,易得切线方程为 ,故选 C.
3.【答案】D
C3 2
P = 5 =
【解析】玉衡和天权都没有被选中的概率为 ,故选 D.
C37 7
4.【答案】A
【解析】lga > lgb a > b > 0 a > b,故充分性成立,反之,若 a > b,有可能b=0,
lg a > lgb lga > lgb
此时 不成立,所以 是 a > b的充分不必要条件,故选 A.
5.【答案】C
f ( x) = P(X ≥ x) (x > 0)
【解析】由题正态曲线关于直线 x = 0对称,因为 ,根据对称性可
f ( x) = P(X ≤ x) =1 f ( x) f ( x)+ f (x) =1
得 ,即 ,故选 C.
6.【答案】B
【解析】记事件 A表示“球取自甲箱”,事件 A表示“球取自乙箱”,事件 B表示“取得黑球”,
( ) ( 1 2 1 2P A = P A则 ) = ,P (B | A) = = ,P (B | A) = P (B) =,由全概率公式得
2 6 3 5
P (A)P (B | A) + P (A) ( ) 1 1 1 2 11P B | A = × + × = .故选 B.
2 3 2 5 30
7.【答案】A
4 C 4x4 ( 1)1( 2) +C3x3( 1)2 x 4
【解析】含 x 的项应为: 5 5 ,所以 x 系数为 20.故选 A.
1 8
高二数学参考答案 第 页(共 页)
{#{QQABbQAAoggIAAJAABBCUwXCCAKQkhCACIgGxEAYMEAAyQFABCA=}#}
8.【答案】C
1+ lnb = e2 lnb = e3 (1+lnb) f (x) = x e3 x f ′【解析】由题: ,可设 ,则 (x) =1+ e3 x > 0,
即 y = f (x)恒增,于是有a =1+ lnb,且 lna = ln e3 a = 3 a,故 ln ab = 3 a + (a 1)
= 2 2,所以ab = e ,故选 C.
二、选择题(本题共 4小题,每小题 5分,共 20分.在每小题给出的选项中,有多项符合题
目要求.全部选对的得 5分,部分选对的得 2分,有选错的得 0分.)
题号 9 10 11 12
答案 AB CD CD ACD
9.【答案】AB
x = 3 y =140
【解析】由已知,可得 , ,A正确;代入计算得 b = 44.3,B正确;从而相关
系数 r > 0,C错误;可预测 6月份的服装销量为 272.9万件,D错误.故选 AB.
10.【答案】CD
′ 1 x
2 bx +1
f ′ x = 0 (0,+∞)
【解析】由 f (x) = + x b = (x > 0),则可知 ( ) 在 上有解,因为
x x
b > 0,
x > 0 u (x) = x2 bx +1 u (0) =1> 0 2
,设 ,因为 ,则只要 解得b > 2,故选 CD.
2 b 4 > 0,
11.【答案】CD
【解析】设男女大学生各有 m人,根据题意画出 2×2列联表,如下图:
看 不看 合计
5 1
m m
男 m
6 6
2 1
m m
女 m
3 3
3 1
m m
合计 2m
2 2
2
5 1 1 2× 2m m m m× m
χ 2 6 3 6 3
2m
所以 = = ,因为有 99%的把握认为性别与对产品是否满
3 1
× 27m m×m×m
2 2
2m
> 6.635 2m >179.145
意有关,所以 ,解得 ,结合选项,故选 CD.
27
2 8
高二数学参考答案 第 页(共 页)
{#{QQABbQAAoggIAAJAABBCUwXCCAKQkhCACIgGxEAYMEAAyQFABCA=}#}
12.【答案】ACD
A a > 0 b > 0 a + b = 6 (1+ a)(1+b) =1+ a +b+ ab = 7+ ab【解析】对于 ,因为 , ,且 ,所以
2
a + b
≤ 7 + =16,当且仅当 a = b = 3时等号成立,故 A正确;对于 B,
2
( 2a +1 + 2b + 3)2
≤ 2a +1+ 2b + 3 =16,故 2a +1 + 2b + 3 ≤ 4 2,当且仅当
2
7 5
a = ,b =
时等号成立,故 B不正确;对于 C, a b = 2a 6 > 6,所以
2 2
1 1 1 1 1 1
2a b > 2 6 = + = a + b + =
,故 C正确;对于 D,因为 ( )
64 a b 6 a b
1 b a 1 b a 2
+ + 2 × 2 × + 2 = ,当且仅当a =b=3时取等号,所以6 a b 6 a b 3
1 1 1
2 2
+ 1 +
1 1 × 2 = 2 ,当且仅当a =b=3时取等号.故 D正确;故选 ACD.
a2 b2 2 a b 2 3 9
三、填空题(本大题共 4小题,每小题 5分,共 20分)
13.【答案】 25
(2, 4), (3,3) (2, 4) C4C2 =15 (3,3)
【解析】由题知,共有 两种分法: 这种分法数为 6 2 种; 这
C3C36 3
种分法数为 =10种,所以,共有 25种.
2!
14.【答案】1
f ′(x) = ln x x∈(0,1【解析】易知 ,∴ ) f ′(x) > 0 x∈(1,+∞ f ′ x < 0时, ; )时, ( ) ,
f (x) (0,1) (1,+∞ f x∴ 在 单增, )单减,∴ ( ) = f (1) =1.
max
15 3, 3 .【答案】
f ′ x = 3x2 + 2mx 1
【解析】因为 ( ) ,只需 ≤ 0,解得 3 ≤ m ≤ 3,即
m∈ 3, 3
.
3 8
高二数学参考答案 第 页(共 页)
{#{QQABbQAAoggIAAJAABBCUwXCCAKQkhCACIgGxEAYMEAAyQFABCA=}#}
2+ ln 2
16.【答案】
2
x x x 1′
【解析】 y= 2e + x得 y = 2e +1,令 2e +1= 2得 x = ln ,得切点坐标
2
1 1 1 1 1
ln ,1+ ln ,再令2x 1=1+ ln ,得 x =1+ ln ,于是符合题意的
2 2 2 2 2
1 1 1 1 1 2+ ln 2
x2 =1+ ln , x1 = ln ,因此: x2 x1 =1 ln = .
2 2 2 2 2 2
四、解答题(本大题共 6小题,共 70分.解答应写出文字说明、证明过程或演算步骤)
17.【解析】
2
1 a=4( )当 时,得3x2 5x + 2 > 0 (3x 2)(x 1) > 0 x >1 x <, ,解得 或 ,
3
2
( ∞, )∪ (1,+∞)
所以此不等式的解集为 .·················································5分
3
f (x) 1 1
2 x > 0 > 3x a +1< 6x + x > 0( )当 时,不等式 恒成立,可得 对 都成立,
x x x
1 1 6
6x + ≥ 2 6 6x =
由于 ,当且仅当 即 x = 时等号成立,所以 a +1< 2 6,即
x x 6
a < 2 6 1 a,故实数 的取值范围是 ( ∞, 2 6 1).····································10分
18.【解析】
f ′(x) = 6x2 2ax
(1)由题得 ,······································································1分
a≤0 f (x) (0,+∞) f (x) > f (0) =1 f (x)当 时,函数 在区间 内单调递增,且 ,所以函数 在
(0,+∞)
内无零点;················································································3分
a a
a > 0 f (x) ( ∞,0) 0, ,+∞
当 时,函数 在 内单调递增;在区间 内单调递减,在区间
3 3
x = 0 f (0) =1
内单调递增.当 时, ;························································5分
a
f = 0故只需 ,···············································································6分
3
解得 a = 3.·······················································································7分
1 1
(2)由 f ( ) = 0,所以切点为 ( ,0),·····················································8分
2 2
4 8
高二数学参考答案 第 页(共 页)
{#{QQABbQAAoggIAAJAABBCUwXCCAKQkhCACIgGxEAYMEAAyQFABCA=}#}
1 9
f ′又 ( ) = ,·················································································9分
2 2
9 1
故切线方程为 y 0 = (x ( )),······················································10分
2 2
化简得:18x 4y + 9 = 0 .····································································12分
19.【解析】
(1)根据抽查数据,该市 100天空气中的 PM2.5浓度不超过 75,且 SO2浓度不超过 150的
天数为 32+18+6+8=64,因此该市一天空气中 PM2.5浓度不超过 75,且 SO2浓度不
64
超过 150的概率的估计值为 =0.64.·······················································6分
100
(2)根据抽查数据,可得 2×2列联表:
SO2浓度
PM2.5
浓度
[0 150] (150 475]
, ,
[0 75]
, 64 16
(75 115]
, 10 10
零假设为 H0:该市一天空气中 PM2.5浓度与 SO2浓度无关.由列联表中的数据得:
× 2100 (64×10 16×10)
χ2= ≈7.484.························································10分
80× 20×74× 26
由于 7.484>6.635=χ0.01,所以依据小概率值α=0.01的独立性检验,我们推断 H0不成
立,即认为该市一天空气中 PM2.5浓度与 SO2浓度有关.··························12分
20.【解析】
1 f (x) = (x 1)ex f ′( x) = xex( )因为 ,所以 ,
x < 0 f ′(x) < 0 f ( x)
当 时, , 单调递减,
x > 0 f ′ x > 0 f ( x)
当 时, ( ) , 单调递增,
x =0 f (0) = 1所以当 时,函数取得最小值 .··············································4分
x
(2 g ′ x = xe a)函数的定义域为R, ( ) ,
h (x) = xex h′(x) = ( x +1)ex h′( x) = ( x +1)ex = 0
设 , ,由 ,得 x= 1,
列表如下:
5 8
高二数学参考答案 第 页(共 页)
{#{QQABbQAAoggIAAJAABBCUwXCCAKQkhCACIgGxEAYMEAAyQFABCA=}#}
x ( ∞, 1) 1 ( 1,+∞ )
h′(x) 0 +
1
h (x)
减 极小值 增
e
x < 0 h ( x) = xex < 0
当 时, ,
x > 0 h ( x) = xex > 0
当 时, ,·············7分
h (x) y = a
做出函数 与 的大致图象,如图,
1
< a < 0 y = a y = h (x)
当 时,直线 与 的图
e
象有 2个交点,····················································································9分
x , x x < x
设这两个交点的横坐标分别为 1 2,且 1 2,
x < x x > x g′ x = xex a > 0
数形结合可知:当 1或 2时, ( ) ,
x < x < x ′
1 2 g (x) = xex a < 0 g x当 时, ,此时函数 ( )有 2个极值点. ·············11分
1
a < a < 0
所以 的取值范围是 .·······························································12分
e
21.【解析】
(1)由题意, X 可取 0,1,2,3,4.
P (X = 0) 2 2 1= 1
× 1 = ,·····························································1分
3 3 9
2 2 4
P (X =1) = C12 × × 1
= ,······························································2分
3 3 9
( ) 2 2 1 1 1P X = 2 = × × 1 × 1 = ,····················································3分
3 3 2 2 9
( ) 2 2 1 1= = × × 1 × × 2P X 3 C2 1 = ,·····················································4分
3 3 2 2 9
( 2 2 1 1 1P X = 4) = × × × = ,·································································5分
3 3 2 2 9
则 X 的分布列为:
6 8
高二数学参考答案 第 页(共 页)
{#{QQABbQAAoggIAAJAABBCUwXCCAKQkhCACIgGxEAYMEAAyQFABCA=}#}
X 0 1 2 3 4
1 4 1 2 1
P
9 9 9 9 9
( ) 1 4 1 2 1 16E X = 0× +1× + 2× + 3× + 4× = .··············································7分
9 9 9 9 9 9
2 1 1
2 P = P X = 3 + P X = 4 = + =( )每一轮获得纪念章的概率为 ( ) ( ) ,·················8分
9 9 3
每一轮相互独立,则每一轮比赛可视为二项分布,·····································9分
1
4 Y ~ B 4,设 轮答题获得纪念章的数量为Y ,则 ,··································10分
3
2 4 2
P (Y = 2) 2 1 2 8= C = ,·····························································11分4
3 3 27
8
即甲同学则获得 2枚纪念章的概率是 .··················································12分
27
22.【解析】
1 f ( x) = a ln x 2x (0,+∞ )( )因为 定义域为 ,
a 2x + a
f ′(x) = 2 =
所以 ,·······································································1分
x x
a0 f ′(x) < 0 f (x) (0,+∞)
①当 时,恒有 ,得 在 上单调递减;····························2分
a >0 f ′
a a
(x) = 0 x = (0, ) f ′(x) > 0 f (x)
②当 时,由 ,得 ,在 上,有 , 单调递增;
2 2
a
( ,+∞) f ′(x) < 0 f (x)
在 上,有 , 单调递减.···············································4分
2
a
a0 f (x) (0,+∞
) 0,
综上可得:当 时, 在 上单调递减;当 a >0时,在 上单调递增,
2
a
,+∞在 上单调递减;·········································································5分
2
f
(2)方程 (x)+ x(2+ a) = xex x可化为 xe = ax + a ln x,
ex+ln x = a(x+ ln x即 ).·········································································6分
t (x) = x+ ln x t (x) (0,+∞令 ,易知函数 在 )上单调递增,·····························7分
t et结合题意,关于 的方程 = at(*)有两个不等的实根.·····························8分
7 8
高二数学参考答案 第 页(共 页)
{#{QQABbQAAoggIAAJAABBCUwXCCAKQkhCACIgGxEAYMEAAyQFABCA=}#}
et
又因为 t = 0不是方程(*)的实根,所以方程(*)可化为 = a.··················9分
t
et e
t
( ) (t 1( ) )令 g t = ,则 g′ t = .·························································10分
t t 2
g (t) ( ∞,0) (0,1) (1,+∞易得函数 在 和 上单调递减,在 )上单调递增.············11分
a (e,+∞数形结合可知,实数 的取值范围是 ).············································12分
8 8
高二数学参考答案 第 页(共 页)
{#{QQABbQAAoggIAAJAABBCUwXCCAKQkhCACIgGxEAYMEAAyQFABCA=}#}