(共24张PPT)
12.2 全等三角形的判定
第4课时 运用“斜边、直角边”证三角形全等
第十二章 全等三角形
人教版数学教材八年级上
学习目标
1.掌握直角三角形全等的判定方法.
2.会运用“HL”解决一些简单的实际问题.
3.经历探究直角三角形全等条件的过程,体会一般与特殊的辨证关系.
重点:“斜边、直角边”的探究及其运用.
难点:灵活运用三角形全等的判定方法进行证明,注意“HL”与其它判定方法的区别与联系.
课前预习
阅读课本P41-42页内容,了解本节主要内容.
SSS
SAS
ASA
AAS
斜边
一直角边
新课导入
复习提问
引出问题
舞台背景的形状是两个直角三角形,为了美观,工作
人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量. 你能帮工作人员想个办法吗?
SSS
SAS
ASA
AAS
旧知回顾 我们学过的判定三角形全等的方法.
新知讲解
问题:
如果这两个三角形都是直角三
角形,即∠B=∠E=90°,
且AC=DF,BC=EF,现在能
判定△ABC≌△DEF吗?
A
B
C
D
E
F
直角三角形全等的判定(“斜边、直角边”定理)
一
任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A ′B ′C ′,使∠C′=90 °,B′C′=BC,A ′B ′=AB,把画好的Rt△A′B′ C′ 剪下来,放到Rt△ABC上,它们能重合吗?
A
B
C
作图探究
画图思路
(1)先画∠M C′ N=90°
A
B
C
M
C′
N
画图思路
画图思路
(2)在射线C′M上截取B′C′=BC
M
C′
A
B
C
N
B′
M
C′
画图思路
画图思路
(3)以点B′为圆心,AB为半径画弧,交射线C′N于A′
M
C′
A
B
C
N
B′
A′
画图思路
画图思路
(4)连接A′B′
M
C′
A
B
C
N
B′
A′
思考:通过上面的探究,你能得出什么结论?
画图思路
知识要点
“斜边、直角边”判定方法
文字语言:
斜边和一条直角边对应相等的两个直角三角形全等
(简写成“斜边、直角边”或“HL”).
几何语言:
A
B
C
A ′
B′
C ′
在Rt△ABC和Rt△ A′B′C′ 中,
∴Rt△ABC ≌ Rt△ A′B′C′ (HL).
“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.
AB=A′B′,
BC=B′C′,
判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:
(1)一个锐角和这个角的对边对应相等; ( )
(2)一个锐角和这个角的邻边对应相等; ( )
(3)一个锐角和斜边对应相等; ( )
(4)两直角边对应相等; ( )
(5)一条直角边和斜边对应相等. ( )
HL
×
SAS
AAS
AAS
判一判
例1 如图,AC⊥BC, BD⊥AD, AC﹦BD,求证:BC﹦AD.
证明: ∵ AC⊥BC, BD⊥AD, ∴∠C与∠D都是直角.
AB=BA,
AC=BD .
在 Rt△ABC 和Rt△BAD 中,
∴ Rt△ABC≌Rt△BAD (HL).
∴ BC﹦AD.
A
B
D
C
应用“HL”的前提条件是在直角三角形中.
这是应用“HL”判定方法的书写格式.
利用全等证明两条线段相等,这是常见的思路.
典例分析
例2 如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.
证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,
∴Rt△ADC≌Rt△AFE(HL).
∴CD=EF.
∵AD=AF,AB=AB,
∴Rt△ABD≌Rt△ABF(HL).
∴BD=BF.
∴BD-CD=BF-EF.即BC=BE.
方法总结:证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.
例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?
解:在Rt△ABC和Rt△DEF中,
BC=EF,
AC=DF .
∴ Rt△ABC≌Rt△DEF (HL).
∴∠B=∠DEF
(全等三角形对应角相等).
∵ ∠DEF+∠F=90°,
∴∠B+∠F=90°.
D
A
1.判断两个直角三角形全等的方法不正确的有( )
A.两条直角边对应相等
B.斜边和一锐角对应相等
C.斜边和一条直角边对应相等
D.两个锐角对应相等
2.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点
E ,AD、CE交于点H,已知EH=EB=3,AE=4,
则 CH的长为( )
A.1 B.2 C.3 D.4
随堂练习
4.如图,在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求证:△EBC≌△DCB.
A
B
C
E
D
证明: ∵ BD⊥AC,CE⊥AB,
∴∠BEC=∠BDC=90 °.
在 Rt△EBC 和Rt△DCB 中,
CE=BD,
BC=CB .
∴ Rt△EBC≌Rt△DCB (HL).
3.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC (填“全等”或“不全等”),根据 (用简写法).
全等
HL
A
F
C
E
D
B
5.如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.
求证:BF=DE.
证明: ∵ BF⊥AC,DE⊥AC, ∴∠BFA=∠DEC=90 °.
∵AE=CF, ∴AE+EF=CF+EF.
即AF=CE.
在Rt△ABF和Rt△CDE中,
AB=CD,
AF=CE.
∴ Rt△ABF≌Rt△CDE(HL).
∴BF=DE.
6.如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?
【分析】本题要分情况讨论:(1)Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.(2)Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.
解:(1)当P运动到AP=BC时,
∵∠C=∠QAP=90°.
在Rt△ABC与Rt△QPA中,
∵PQ=AB,AP=BC,
∴Rt△ABC≌Rt△QPA(HL),
∴AP=BC=5cm;
能力拓展
(2)当P运动到与C点重合时,AP=AC.
在Rt△ABC与Rt△QPA中,
∵PQ=AB,AP=AC,
∴Rt△QAP≌Rt△BCA(HL),
∴AP=AC=10cm,
∴当AP=5cm或10cm时,△ABC才能和△APQ全等.
【方法总结】判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.
“斜边、直角边”
内容
斜边和一条直角边对应相等的两个直角三角形全等.
前提条件
在直角三角形中
使用方法
只须找除直角外的两个条件即可(两个条件中至少有一个条件是一对对应边相等)
课堂小结
本课结束
*
*