第六章 一次函数
1.函 数
当你用温度计测量水的温度时,温度计水银柱的高度是随温度的变化而如何变化的?当你坐在匀速行驶的客车上时,汽车行驶的路程是随时间的增加而怎样变化的?在我们的生活中,变化无时不在.在报纸或电视上,你见过以下图形吗?
图甲是某次比赛中四位选手的得分情况,图乙是某种股票某月内的收盘价的变化情况.请你想一想:
(1)以上例子中都有一个变化过程,在这个变化过程中有几个变量,它们有关系吗?
(2)图甲中,你能知道每个选手的得分吗?
(3)图乙中,你能知道这个月内每一天的收盘价吗?哪一天的收盘价最高?哪一天的收盘价最低?收盘价是10元的有几天?
测验评价等级:A B C,我对测验结果(满意、一般、不满意)
参考答案
(1)在每一个变化过程中都有两个变量,它们中的一个变量随另一个变量的变化而改变.
(2)从图甲中可以读出每位选手的得分.
(3)从图乙中可以得知这个月中每天的收盘价,这个月20日的收盘价最高,2日的收盘价最低,收盘价是10元的这个月中有六天.第六章 一次函数
1.函 数
班级:________ 姓名:________
1.请你说一说
下列各题中分别有几个变量?你能将其中某个变量看成另一个变量的函数吗?
① ②
图1 图2
③
通话时间t/分 0<t≤3 3<t≤4 4<t≤5 5<t≤6 6<t≤7 …
话费y/元 0.4 0.8 1.2 1.6 2.0 …
2. 请你想一想:
下列各题中,哪些是函数关系,哪些不是函数关系:
(1)在一定的时间内,匀速运动所走的路程和速度.
(2)在平静的湖面上,投入一粒石子,泛起的波纹的周长与半径.
(3)x+3与x.
(4)三角形的面积一定,它的一边和这边上的高.
(5)正方形的面积和梯形的面积.
(6)水管中水流的速度和水管的长度.
(7)圆的面积和它的周长.
(8)底是定长的等腰三角形的周长与底边上的高.
3.
图3是弹簧挂上重物后,弹簧的长度y(厘米)与所挂物体的质量x(千克)之间的变化关系图.根据图象,回答问题:
图3
(1)不挂重物时,弹簧长多少厘米?
(2)当所挂物体的质量分别为5千克,10千克,15千克,20千克时弹簧的长度分别是多少厘米?
(3)当物体的质量x取0千克至20千克之间任一确定的值时,相应的弹簧的长度y能确定吗?反过来,弹簧的长度y是15~25之间一个确定的值,你能确定所挂重物的质量是多少吗?
(4)弹簧长度y可以看成是物体质量x的函数吗?
测验评价结果:________;对自己想说的一句话是:__________________。
参考答案
1.①②③都含有两个变量,①中人均纯收入可以看成年份的函数,②中有效成分释放量是服用后的时间的函数,③中话费是通话时间的函数
2.(1)(2)(3)(4)(7)(8)是函数关系,(5)(6)不是.
3.(1)不挂重物时,弹簧长15 cm.
(2)当所挂重物的质量分别是5千克、10千克、15千克、20千克时,弹簧的长度分别为17.5 cm、20 cm、22.5 cm、25 cm
(3)当x取0~20之间任一确定值时,y都惟一确定;反之也是.
(4)y可以看成是x的函数.第五章 一次函数
1.函 数
班级:___________________________姓名:___________________________
作业导航
理解函数、自变量、因变量的意义.
一、选择题
1.下列变量之间的关系中,具有函数关系的有( )
①三角形的面积与底边 ②多边形的内角和与边数 ③圆的面积与半径④y=中的y与x
A.1个 B.2个 C.3个 D.4个
2.对于圆的面积公式S=πR2,下列说法中,正确的为( )
A.π是自变量 B.R2是自变量
C.R是自变量 D.πR2是自变量
3.下列函数中,自变量x的取值范围是x≥2的是( )
A.y= B.y=
C.y= D.y=·
4.已知函数y=,当x=a时的函数值为1,则a的值为( )
A.3 B.-1 C.-3 D.1
5.某人从A地向B地打长途电话6分钟,按通话时间收费,3分钟内收2.4元,每加一分钟加收1元.则表示电话费y(元)与通话时间x(分)之间的函数关系正确的是( )
二、填空题
6.轮子每分钟旋转60转,则轮子的转数n与时间t(分)之间的关系是__________.其中______是自变量,______是因变量.
7.计划花500元购买篮球,所能购买的总数n(个)与单价a(元)的函数关系式为______,其中______是自变量,______是因变量.
8.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为______.
9.已知矩形的周长为24,设它的一边长为x,那么它的面积y与x之间的函数关系式为______.
10.已知等腰三角形的周长为20 cm,则腰长y(cm)与底边x(cm)的函数关系式为______,其中自变量x的取值范围是______.
三、解答题
11.如图所示堆放钢管.
(1)填表
层数 1 2 3 … x
钢管总数
(2)当堆到x层时,钢管总数如何表示?
12.如图,这是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:
(1)______时气温最高,______时气温最低,最高气温是______,最低气温是______.
(2)20时的气温是______;
(3)______时的气温是6 ℃;
(4)______时间内,气温不断下降;
(5)______时间内,气温持续不变.
13.某市出租车起步价是7元(路程小于或等于2千米),超过2千米每增加1千米加收1.6元,请写出出租车费y(元)与行程x(千米)之间的函数关系式.
14.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2 m/s,到达坡底时小球的速度达到40 m/s.
(1)求小球的速度v(m/s)与时间t(s)之间的函数关系式;
(2)求t的取值范围;
(3)求3.5 s时小球的速度;
(4)求n(s)时小球的速度为16 m/s.
参考答案
1.函 数
一、1.D 2.C 3.D 4.A 5.C
二、6.n=60t,t,n 7.n=,a,n
8.y=0.2x+100 9.y=x(12-x)
10.y=,0三、11.(1)1,3,6,…, (2)
12.(1)16,4,10℃,-4℃ (2)8℃ (3)10 (4)16-24 (5)12-14
13.y=1.6(x-2)+7
14.(1)v=2t (2)0≤t≤20 (3)7 (4)8