4.7 用牛顿运动定律解决问题(二)
【学习目标】
1、理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件。2、会用共点力平衡条件解决有关力的平衡问题。【学习重点】
共点力作用下物体的平衡条件及应用.
【学习难点】
共点力平衡条件的应用.
【方法指导】
自主探究、交流讨论、自主归纳
【学习过程】
任务一、课前预习1、平衡状态 静止状态或匀速直线运动状态,叫做平衡状态。
2、共点力作用下物体的平衡条件:
由牛顿第二定律知:在共点力作用下物体的平衡条件是 .
3、物体平衡的两种基本模型
二力平衡条件:等大、反向、共线.
4、研究物体平衡的基本思路和基本方法
(1)转化为二力平衡模型——合成法
三力平衡条件:任意两个力的合力与第三个力等大、反向、共线。
据平行四边形定则作出其中任意两个力的合力来代替这两个力,从而把三力平衡转化为二力平衡。这种方法称为合成法。
(2)转化为四力平衡模型——分解法
物体受三个共点力平衡时,也可以把其中一个力进行分解(一般采用正交分解法),从而把三力平衡转化为四力平衡模型。这种方法称为分解法。
任务二、典型例题
例1、如图所示,在倾角为θ的斜面上,放一重力为G的光滑小球,球被竖直挡板挡住不下滑,求:球对斜面和挡板的弹力大小。
☆交流讨论
拓展:重G的光滑小球静止在固定斜面和竖直挡板之间。若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1、F2各如何变化?
例2、城市中的路灯,无轨电车的供电线路等,经常用三解形的结构悬挂。图为这类结构的一种简化模型。图中硬杆OB可绕通过B点且垂直于纸面的轴转动,钢索和杆的重量都可忽略。如果悬挂物的重量为G,角AOB等于θ,钢索OA对O点的拉力和杆OB对O点的支持力各是多大?
1、节点O的受到几个力的作用?
2、同学们把具体的解答过程写出来.
【达标检测】
1.若一个物体处于平衡状态,则此物体一定是( )
A.静止 B.匀速直线运动 C.速度为零 D.各共点力的合力为零
2.大小不同的三个力同时作用在一个小球上,以下各组中可使小球平衡的是( )
A.2 N,3 N,6 N B.1 N,4 N,6 N
C.35 N,15 N,25 N D.5 N,15 N,25 N
3.如图在水平力F的作用下,重为G的物体沿竖直墙壁匀速下滑,物体与墙之间的动摩擦因数为μ,物体所受摩擦力大小为
A.μf B.μ(F+G)
C.μ(F-G) D.G
4.如图所示,一个重为G的木箱放在水平地面上,木箱与水平面间的动摩擦因数为μ,用一个与水平方向成θ角的推力F推动木箱沿地面做匀速直线运动,则推力的水平分力等于
A.Fcosθ B.μG/(cosθ-μsinθ)
C.μG/(1-μtanθ) D.G D.Fsinθ
5、如图所示,电灯悬挂于两墙之间,更换绳OA,使连接点A向上移,但保持O点位置不变,则A点向上移时,绳OA的拉力( ) A.逐渐增大 B.逐渐减小 C.先增大后减小 D.先减小后增大
6、质量为5.5Kg的物体,受到斜向右上方与水平方向成370角的拉力F=25N作用,在水平地面上匀速运动,求物体与地面间的动摩擦因数(g=10m/s2)。
7、如图所示,质量为m的木块放在质量为M、倾角为θ的斜面体上,斜面体放在粗糙的水平地面上,用沿斜面向上的拉力F拉木块,使木块与斜面体都保持静止,求地面对斜面体的摩擦力和支持力。
8、如图所示,长为5m的细绳的两端分别系于竖立在地面上相距为4m的两杆的顶端A、B ,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N的物体,平衡时,问:
①绳中的张力T为多少?
②A点向上移动少许,重新平衡后,绳与水平面夹角,绳中张力如何变化??
班级: 组别: 姓名: 组内评价: 教师评价:
用牛顿运动定律解决问题(二)(课时2)
【学习目标】
1.通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质.
2.进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤.
【学习重点】
发生超重、失重现象的条件及本质.
【学习难点】
超重、失重现象的实质
【方法指导】
自主探究、交流讨论、自主归纳
【学习过程】
任务一、课前预习(阅读教材p86-87页完成下列问题)1、超重:物体对支持物的压力(或对悬挂物的拉力)_________物体所受重力的情况称为超重现象。
2、失重:物体对支持物的压力(或对悬挂物的拉力)_________物体所受重力的情况称为失重现象。如果物体对支持物、悬挂物的作用力的__________,即物体正好以大于等于_________,方向________的加速度运动,此时物体处于完全失重状态。
在超重、失重、完全失重等物理现象中,物体所受的重力分别 、 、 。(填“变大”、“变小”或“不变”)
任务二、超重和失重 (学生体验)
一位同学甲站在体重计上静止,另一位同学说出体重计的示数.注意观察接下来的实验现象.
1、甲突然下蹲时,体重计的示数是否变化?怎样变化?
2、甲突然站起时,体重计的示数是否变化?怎样变化?
3、当人下蹲和突然站起的过程中人受到的重力并没有发生变化,为什么体重计的示数发生了变化呢?
例题:人站在电梯中,人的质量为m.如果当电梯以加速度a。加速上升时,人对地板的压力为多大?(可以参考教材例题独立完成下列空)
1:选取人作为研究对象,分析人的受力情况:人受到 力的作用,分别是 .
2:取向上为正方向,根据牛顿第二定律写出支持力F、重力G、质量m、加速度a的方程:
由此可得:F= ,由于地板对人的支持力与人对地板的压力是一对 与 力,根据牛顿第 定律,人对地板的压力.即F’= 由于F’ mg(填<,=,>)所以当电梯加速上升时,人对地板的压力比人的重力 .
总结:物体对支持物的压力(或对悬挂物的拉力)大于物体受到的重力的现象称为 现象.
问题:1、物体处于超重现象时物体的加速度方向如何呢?
2、当物体的加速度方向向上时,物体的运动状态分为两种情况?
拓展:1、人以加速度a匀减速下降,这时人对地板的压力又是多大?
2.人以加速度a匀加速向下运动,这时人对地板的压力多大?
3.人随电梯以加速度a匀减速上升,人对地板的压力为多大?
4.人随电梯以加速度g匀加速下降,这时人对地板的压力又是多大?
总结:对超重和失重现象的归纳总结:
①当物体具有 加速度时,物体对测力计的作用力大于物体所受的重力,这种现象叫超重。
②当物体具有 加速度时,物体对测力计的作用力小于物体所受的重力,这种现象叫失重。
③物体对测力计的作用力的读数等于零的状态叫 状态。处于完全失重状态的液体对器壁没有压强。
④物体处于超重或失重状态时,物体所受的重力并没有变化。
【达标检测】
1.关于超重和失重,下列说法正确的是( )
A.超重就是物体受的重力增加了 B.失重就是物体受的重力减少了
C.完全失重就是物体一点重力都没有人
D.不论超重、失重或安全失重,物体所受的重力是不变的
2.下列说法中正确的是( )
A.只要物体向上运动,速度越大,超重部分越大
B.只要物体向下运动,物体就失重
C.只要物体具有竖直向上加速度,物体就处于超重状态,与物体运动方向和速度大小无关
D.只要物体在竖直方向运动,物体就一定处于超重或失重状态
3.在一个封闭装置中,用弹簧秤称一物体的重力,根据读数与实际重力之间的关系,以下说法中正确的是……………………………………………………( )
A.读数偏大,表明装置加速上升 B.读数偏小,表明装置减速下降
C.读数为零,表明装置运动加速度等于重力加速度,但无法判断是向上还是向下运动
D.读数准确,表明装置匀速上升或下降
4、一个人站在磅秤上,在他蹲下的过程中,磅秤的示数将( ) A、先小于体重后大于体重,最后等于体重。 B、先大于体重后小于体重,最后等于体重 C、先小于体重,后等于体重D、先大于体重,后等于体重5、某人在以a=2m/s2匀加速下降的电梯中最多能举起m1=75kg的物体,则此人在地面上最多可举起多大质量的物体?若此人在一匀加速上升的电梯中最多能举起m2=50kg的物体,则此电梯上升的加速度为多大?
6.一个质量是50 kg的人站在升降机的地板上,升降机的顶部悬挂了一个弹簧秤,弹簧秤下面挂着一个质量为m=5 kg的物体A,当升降机向上运动时,他看到弹簧秤的示数为40 N, g取10 m/s2,求此时人对地板的压力。
4.7 用牛顿运动定律解决问题(二)
教材分析
本节课教材上设计了两个大问题,1.共点力的平衡条件,2.超重和失重,每个问题都给出了相关定义和一个配套例题,要能灵活应用第一个问题,还需要设计相关练习,第二个问题理解起来有难度,需要设计贴近生活易于理解的实验,帮助学生理解。
二、教学目标
知识与技能
理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件。
会用共点力平衡条件解决有关力的平衡问题。
通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质。
进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤。
过程与方法
培养学生处理多共点力平衡问题时一题多解的能力。
引导帮助学生归纳总结发生超重、失重现象的条件及实质。
情感态度与价值观
渗透“学以致用”的思想,有将物理知识应用于生产和生活实践的意识,勇于探究与日常生活有关的物理问题。
培养学生联系实际,实事求是的科学态度和科学精神。
三、教学重点、难点
共点力作用下物体的平衡条件及应用。
发生超重、失重现象的条件共点力平衡条件的应用。
超重、失重现象的实质及本质。
四、学情分析
学生预习知识后,能够理解基本定义,和第一个问题的相关例题,对于第二个问题的实质还是会存在问题。
五、教学方法 引导法和实验法
六、课前准备
充分备课,设计过程、练习、实验和实验仪器。
七、课时安排
一个课时完成
八、教学过程
(一)、回顾
上节课我们学习了牛顿运动定律解决问题的有关知识,都是哪两种类型:
(二)、引入
师:今天我们继续来学习用牛顿定律解决问题。首先请同学们回忆一个概念:平衡状态。什么叫做平衡状态。
生:如果一个物体在力的作用下保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态。
师:物体处于平衡状态时它的受力特点是什么?
生:因为牛顿定律是力与运动状态相联系的桥梁,所以根据牛顿第二定律知当合外力为0时,物体的加速度为0,物体将静止或匀速直线运动。
师:当一个物体受几个力作用时,如何求解合力?
生:根据平行四边形定则将力进行分解合成。
师:力的分解合成有注意点吗?或力的分解合成有适用范围吗?
学生会思考一会儿,但肯定会找到答案
生:力的分解合成只适用于共点力。
师:那什么是共点力?
生:如果几个力有共同的作用点或它们的延长线交于一点,那这几个力叫做共点力。
师:回答得很好,其实在我们刚才的讨论中有一点我要给大家指出来的就是:物体处于平衡状态时分为两类,一类是共点力作用下物体的平衡;一类是有固定转动轴的物体的平衡。在整个高中阶段,我们主要研究共点力作用下物体的运动状态。今天我们先来研究共点力作用下物体的平衡条件。
(三)、共点力作用下物体的平衡条件
【定义】:在共点力作用下物体的平衡条件是合力为0。
师:同学们能列举生活中物体处于平衡状态的实例吗?
生:很多。如桌上的书、吊着的电灯、做匀速直线运动的汽车等等。
师:竖直上抛运动的物体到达最高点的瞬间是否处于平衡状态?
生:不是!因为物体在最高点虽然速度为0,但仍受到重力,加速度仍为g,物体不能保持静止或匀速直线运动。
师:回答得很好!平衡状态是指物体保持静止或匀速直线运动,并不说若指某一时刻静止,那这一时刻就是平衡状态。平衡状态是一个持续的过程。或平衡状态是指加速度为0的状态。
例1、城市中的路灯,无轨电车的供电线路等,经常用三解形的结构悬挂。图为这类结构的一种简化模型。图中硬杆OB可绕通过B点且垂直于纸面的轴转动,钢索和杆的重量都可忽略。如果悬挂物的重量为G,角AOB等于θ,钢索OA对O点的拉力和杆OB对O点的支持力各是多大?
1、轻质细绳中的受力特点:两端受力大小相等,内部张力处处相等。
2、轻质直杆仅两端受力时(杆处于平衡状态)的特点:这两个力必然沿杆的方向且大小相等。
3、节点O也是一理想化模型。
练习1、举重是中国代表团在奥运会上重要的夺金项目。在举重比赛中,运动员举起杠铃时必须使杠铃平衡一定时间,才能被裁判视为挺(或抓)举成功。运动员可通过改变两手握杆的距离来调节举起时双臂的夹角。若双臂夹角变大,则下面关于运动员保持杠铃平衡时手臂用力大小变化的说法正确的是(C )
A.不变 B.减小 C.增大 D.不能确定
【解析】如下图:为了保证棒静止,两手举杠铃的力沿竖直方向的分力之和应与重力抵消。所以当手臂夹角变大时,为了保证举力竖直方向的分力大小不变,则要求举力增大。
(四)、超重与失重
师:自从神州六号飞船发射成功以来,人们经常谈到超重和失重。那什么是超重和失重呢,下面我们就来研究这个问题。
播放一段视频增加学生的感性认识
例2、人站在电梯中,人的质量为m。
①人和电梯一同静止时,人对地板的压力为多大?
【解析】:求解人对地板的压力,该题中如果选电梯为研究对象,受力情况会比较复杂,甚至无法解题。所以我们只能选人为研究对象,那选人为研究对象能求解出人对电梯的压力吗?能!根据牛顿第三定律:作用力与反作用力是等在反向的。只要求出电梯对人的支持力,再根据牛顿第三定律就可求出人对电梯的压力。
因为人是静止的所以合外力为0有:
②人随电梯以加速度a匀加速上升,人对地板的压力为多大?
【解析】:以加速度a匀加速上升,因为加速,所以加速度方向与速度同向,物体是上升的,所以加速度方向也是向上的。有
看到了什么?人对地面的压力竟然会大于本身的重力?
③人以加速度a匀减速下降,这时人对地板的压力又是多大?
【解析】:以加速度a匀减速下降,因为减速,所以加速度方向与速度反向,物体是下降的,所以加速度方向是向上的。有
人对地面的压力还是大于本身的重力!
④人随电梯以加速度a(a⑤人随电梯以加速度a(a学生自己分析解答。不会有太大难度
④⑤两题加速度方向均向下,合外力向下,于是有
师:从上面的解题结果我们发现,当人加速上升和减速下降时,人对地面的压力大于本身重力;当人加速下降和减速上升时,人对地面的压力小球本身重力。物理学中分别把这两种现象叫做超重和失重。
【定义】:物体对支持物的压力(或对悬挂物的拉力)大于物体所受的重力,这种现象叫做超重。
【定义】:物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力,这种现象叫做失重。
师:虽然从理论上我们推导出了应该有这样的现象,但我估计大家在日常生活中都没有注意到这些现象,可能都有点怀疑。那你们有坐过电梯的经验吗?电梯启动上升时,你会心慌也会充分体会到“脚踏实地”的感觉,电梯停止上升时,你会头晕,同时有种“飘飘然”的感觉,这就是超重失重引起的。还有坐汽车时,汽车速度很快上桥并从桥顶下桥,大家会突然觉得心突然变得空空的,很难受,那是失重造成的。
实验验证
师:其实大家完全可以利用身边的器材来验证。
实验1、用弹簧秤挂上钩码,然后迅速上提和迅速下放。
现象:在钩码被迅速上提的一瞬间,弹簧秤读数突然变大;在钩码被迅速下放的一瞬间,弹簧秤读数突然变小。
师:迅速上提时弹簧秤示数变大是超重还是失重?迅速下放时弹簧秤示数变小是超重还是失重?
生:迅速上提超重,迅速下放失重。
体会为何用弹簧秤测物体重力时要保证在竖直方向且保持静止或匀速
实验2、学生站在医用体重计上,观察下蹲和站起时秤的示数如何变化?
在实验前先让同学们理论思考示数会如何变化再去验证,最后再思考。
(1)在上升过程中可分为两个阶段:加速上升、减速上升;下蹲过程中也可分为两个阶段:加速下降、减速下降。
(2)当学生加速上升和减速下降时会出现超重现象;当学生加速下降和减速上升时会出现失重现象;
(3)出现超重现象时加速度方向向上,出现失重现象时加速度方向向下。
完全失重
⑥人随电梯以加速度g匀加速下降,这时人对地板的压力又是多大?
【解析】即当电梯对人没有支持力时,人只受重力,加速度大小为g,做的是自由落体运动。
同学们又看到了什么?人竟然可以对电梯没有压力?
师:物理学中把这种现象叫做完全失重。
【定义】:如果物体正好以大小等于g方向竖直向下的加速度做匀变速运动,这时物体对支持物、悬挂物完全没有作用力,好像完全没有了重力作用,这种状态是完全失重。
师:刚上课时我们看到的视频里人类在太空中就处于完全失重状态。
演示实验3、一个盛满水的瓶子底部有一小孔,静止在手中时,水会喷射而出;如果突然松手,让瓶子自由下落时,让学生观察瓶子在下落过程中发生的现象?为什么?
生:瓶子和水一起下落时,每一部分水和瓶子它们做的都是自由落体运动,运动情况完全一样,所以它们之间没有挤压力,均处于完全失重状态。没有了挤压力,水中了就不存在压强了,所以上面的水也不会把下面的水往外压了。也可以用反证法说明它们之间没有压力。
问题:
1、人随电梯能以加速度a(a>g)匀加速下降吗?
不可能,最大只能是g
2、如瓶竖直向上抛出,水会喷出吗?为什么?
不会,仍然完全失重
3、发生超重和失重现象时,物体实际受的重力是否发生了变化?
没有变有!
归纳总结
(1)什么是超重(失重)现象?
(2)什么情况下会出现超重(失重)现象?
(3)为什么会出现超重(失重)现象?
【牢记】:
1、超重和失重是一种物理现象。
2、物体的重力与运动状态无关,不论物体处于超重还是失重状态,重力不变。
3、规律: 物体具有竖直向上的加速度 超重状态
物体具有竖直向下的加速度 失重状态
超重还是失重由加速度方向决定,与速度方向无关
练习2、在一个封闭装置中,用弹簧秤称一物体的重量,根据读数与实际重力之间的关系,以下说法中正确的是( C )
A.读数偏大,表明装置加速上升
B.读数偏小,表明装置减速下降
C.读数为零,表明装置运动加速度等于重力加速度,但无法判断是向上还是向下运动
D.读数准确,表明装置匀速上升或下降
从动力学看自由落体运动
物体做自由落体运动的两个条件。
九、板书设计
用牛顿运动定律解决问题(二)
共点力的平衡条件
平衡状态
条件:合力为0
例题1:
二、超重和失重
1、什么是超重(失重)现象?
2、什么情况下会出现超重(失重)现象?
3、为什么会出现超重(失重)现象?
例题2
十、教学反思
本节课实验设计科帮助学生理解,但是超重和失重的相关练习,学生掌握的还不是很好,应加强理解的基础上,多加练习。
必修一4.7 用牛顿运动定律解决问题(二)学案
课前预习学案
预习目标
理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件。
会用共点力平衡条件解决有关力的平衡问题。
二、预习内容
4.7 用牛顿运动定律解决问题(二)
1、什么叫做平衡状态。
2、物体处于平衡状态时它的受力特点是什么
3、当一个物体受几个力作用时,如何求解合力?
4、什么是共点力?
5、什么是超重(失重)现象?
6、什么情况下会出现超重(失重)现象?
7、为什么会出现超重(失重)现象?
三、提出疑惑
超重和失重的规律是什么?
课内探究学案
一、学习目标
理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件。
会用共点力平衡条件解决有关力的平衡问题。
通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质。
进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤。
二、学习过程
共点力作用下物体的平衡条件?
同学们能列举生活中物体处于平衡状态的实例吗?
竖直上抛运动的物体到达最高点的瞬间是否处于平衡状态?
例题1、城市中的路灯,无轨电车的供电线路等,经常用三解形的结构悬挂。图为这类结构的一种简化模型。图中硬杆OB可绕通过B点且垂直于纸面的轴转动,钢索和杆的重量都可忽略。如果悬挂物的重量为G,角AOB等于θ,钢索OA对O点的拉力和杆OB对O点的支持力各是多大?
那什么是超重和失重呢?
【定义】:物体对支持物的压力(或对悬挂物的拉力)大于物体所受的重力,这种现象叫做超重。
【定义】:物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力,这种现象叫做失重。
实验1、用弹簧秤挂上钩码,然后迅速上提和迅速下放。
实验2、学生站在医用体重计上,观察下蹲和站起时秤的示数如何变化
完全失重
【定义】:如果物体正好以大小等于g方向竖直向下的加速度做匀变速运动,这时物体对支持物、悬挂物完全没有作用力,好像完全没有了重力作用,这种状态是完全失重。
例2、人站在电梯中,人的质量为m。
①人和电梯一同静止时,人对地板的压力为多大?
②人随电梯以加速度a匀加速上升,人对地板的压力为多大?
③人以加速度a匀减速下降,这时人对地板的压力又是多大?
三、反思总结
四、当堂检测
1、举重是中国代表团在奥运会上重要的夺金项目。在举重比赛中,运动员举起杠铃时必须使杠铃平衡一定时间,才能被裁判视为挺(或抓)举成功。运动员可通过改变两手握杆的距离来调节举起时双臂的夹角。若双臂夹角变大,则下面关于运动员保持杠铃平衡时手臂用力大小变化的说法正确的是( )
A.不变 B.减小 C.增大 D.不能确定
2、在一个封闭装置中,用弹簧秤称一物体的重量,根据读数与实际重力之间的关系,以下说法中正确的是( )
A.读数偏大,表明装置加速上升
B.读数偏小,表明装置减速下降
C.读数为零,表明装置运动加速度等于重力加速度,但无法判断是向上还是向下运动
D.读数准确,表明装置匀速上升或下降
五、课后练习和提高
1、如图所示,物体在水平力F作用下静止在斜面上,若稍增大水平力F,而物体仍能保持静止,下列说法正确的是( )
A、斜面对物体的静摩擦力及支持力都不一定增大
B、斜面对物体的静摩擦力不一定增大,支持力一定增大
C、斜面底部受到地面的摩擦力为F,方向水平向右
D、斜面底部受到地面的摩擦力为F,方向水平向左
2、如图所示,物体B的上表面水平,B上面载着物体A,当它们一起沿固定斜面C匀速下滑的过程中物体A受力是( )
A、只受重力
B、只受重力和支持力
C、有重力、支持力和摩擦力
D、有重力、支持力、摩擦力和斜面对它的弹力
3、把一木块放在水平桌面上保持静止,下面说法中哪些是正确的( )
A、木块对桌面的压力就是木块受的重力,施力物体是地球
B、木块对桌面的压力是弹力,是由于桌面发生形变而产生的
C、木块对桌面的压力在数值上等于木块受的重力
D、木块保持静止是由于木块对桌面的压力与桌面对木块的支持力二力平衡
4、在力的合成中,下列关于两个分力(大小为定值)与它们的合力的关系的说法中,正确的是( )
A、合力一定大于每一个分力;
B、合力一定小于分力;
C、合力的方向一定与分力的方向相同;
D、两个分力的夹角在0°~180°变化时,夹角越大合力越小
5、如图所示,恒力F大小与物体重力相等,物体在恒力F的作用下,沿水平面做匀速运动,恒力F的方向与水平成角,那么物体与桌面间的动摩擦因数为( )
A、 B、 C、 D、
6、2009年8月17日,在德国柏林进行的2009世界田径锦标赛女子撑杆跳高决赛中,罗格夫斯卡以4米75的成绩夺冠。若不计空气阻力,则罗格夫斯卡在这次撑杆跳高中()
A.起跳时杆对她的弹力大于她的重力
B.起跳时杆对她的弹力小于她的重力
C.起跳以后的下落过程中她处于超重状态
D.起跳以后的下落过程中她处于失重状态
7、有关超重和失重的说法,正确的是 ()
A.物体处于超重状态时,所受重力增大;处于失重状态时,所受重力减少
B.竖直上抛运动的物体处于完全失重状态
C.在沿竖直方向运动的升降机中出现失重现象时,升降机一定处于上升过程
D.在沿竖直方向运动的升降机中出现失重现象时,升降机一定处于下降过程
8、某同学站在电梯底板上,利用速度传感器和计算机研究一观光电梯升降过程中的情况,如图所示的2一t图象是计算机显示的观光电梯在某一段时间内速度变化的情况(向上为正方向).根据图象提供的信息,可以判断下列说法中正确的是 ( )
A.在0~5s内,观光电梯在加速上升,该同学处于失重状态
B.在5s~10s内,该同学对电梯底板的压力等于他所受的重力
C.在10s~20s内,观光电梯在减速下降,该同学处于失重状态
D.在20s~25s内,观光电梯在加速下降,该同学处于失重状态
答案:当堂检测
1、C 2、C
课后练习和提高
1、BD 2、B 3CD 4、D 5、C 6、AD 7、B 8、BD
4.7 用牛顿运动定律解决问题(二)
时间:45分钟 满分:100分
一、单项选择题(每小题6分,共30分)
1.如下图所示,三根质量和形状都相同的光滑圆柱a,b,c,它们的重心位置不同,三个相同的支座上支点P,Q在同一水平面上,a球的重心Oa位于球心,b球的重心Ob位于球心正上方,c球的重心Oc位于球心正下方,三球均处于平衡状态,支点P对a球的弹力为FNa,对b,c球的弹力分别为FNb和FNc,则( )
A.FNa=FNb=FNc B.FNa>FNb>FNc
C.FNaFNb=FNc
2.升降机中弹簧测力计下挂一重物,重物的质量为5 kg,而弹簧测力计的示数为25 N,那么升降机的运动可能是( )
A.竖直向上匀加速运动
B.竖直向下变加速运动
C.竖直向上匀减速运动
D.竖直向下匀减速运动
3.如图所示,一物块置于水平地面上.当用与水平方向成60°角的力F1拉物块时,物块做匀速直线运动;当改用与水平方向成30°角的力F2推物块时,物块仍做匀速直线运动.若F1和F2的大小相等,则物块与地面之间的动摩擦因数为( )
A.-1 B.2-
C.- D.1-
4.轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小铁球,电梯中有质量为50 kg的乘客,如图所示,在电梯运行时,乘客发现弹簧的伸长量是电梯静止时轻质弹簧的伸长量的一半,这一现象表明(g=10 m/s2)( )
A.电梯此时可能正以大小为1 m/s2的加速度减速上升,也可能以大小为1 m/s2的加速度加速下降
B.电梯此时可能正以大小为1 m/s2的加速度减速上升,也可能以大小为5 m/s2的加速度加速下降
C.电梯此时正以大小为5 m/s2的加速度加速上升,也可能是以大小为5 m/s2的加速度减速上升
D.无论电梯此时是上升还是下降,也无论电梯是加速还是减速,乘客对电梯底板的压力大小一定是250 N
5.如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是( )
A.FN保持不变,FT不断增大
B.FN不断增大,FT不断减小
C.FN保持不变,FT先增大后减小
D.FN不断增大,FT先减小后增大
二、多项选择题(每小题6分,共18分)
6.如下图所示,质量分别为m1,m2的两个物体通过轻弹簧连接,在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角.则m1所受支持力FN和摩擦力Ff正确的是( )
A.FN=m1g+m2g-Fsinθ
B.FN=m1g+m2g-Fcosθ
C.Ff=Fcosθ
D.Ff=Fsinθ
7.下列仪器在太空中的国际空间站上能正常使用的有( )
A.天平 B.温度计
C.弹簧测力计 D.水银气压计
8.某实验小组利用DIS系统观察超重和失重现象,他们在电梯内做实验,在电梯的地板上放置一个压力传感器,在传感器上放一个重力为20 N的物块,如图甲所示,实验中计算机显示出传感器所受物块的压力大小随时间变化的关系如图乙.则以下根据图象分析得出的结论中正确的是( )
A.从时刻t1到t2,物块处于失重状态
B.从时刻t3到t4,物块处于失重状态
C.电梯可能开始停在低楼层,先加速向上,接着匀速向上,再减速向上,最后停在高楼层
D.电梯可能开始停在高楼层,先加速向下,接着匀速向下,再减速向下,最后停在低楼层
答案
课后作业
1.A 不管小球重心位于O点上方还是下方,支座对三个球的支持力方向相同,故弹力大小相同.
2.C 重物重力为50 N,而测量结果为25 N,故物体处于失重状态,加速度向下,故C有可能;而选项B中,虽然物体也处于失重状态,但弹簧测力计示数不稳定.
3.B 本题意在考查考生对力的正交分解的理解以及对平衡条件的理解与应用.当用F1拉物块时,由平衡条件可知F1cos60°=μ(mg-F1sin60°),当用F2推物块时,又有F2cos30°=μ(mg+F2sin30°),又F1=F2,求得μ==2-,B正确.
4.D 弹簧的伸长量是原来伸长量的一半,此时弹簧对小铁球的拉力F=,说明小铁球处于失重状态,且其具有向下的加速度,数值为,故A,B,C均不正确.由于乘客与小铁球的运动状态相同,故乘客也具有向下的加速度,对乘客进行受力分析得Mg-FN=Mg解得FN=250 N,故D正确.
5.D 本题考查动态平衡问题,意在考查考生解决动态平衡问题的能力.由于缓慢地推动斜面体,小球处于动态平衡,小球受到大小方向不变的重力,方向不变的斜面的支持力,还有绳的拉力,三力构成封闭三角形,如图所示,开始时绳的拉力
与支持力的夹角为锐角,随着绳的拉力FT按顺时针转动,其大小先减小后增大,而支持力FN一直增大,D项正确.
6.AC 本题考查整体法和隔离法及受力分析、物体平衡条件应用等知识点,意在考查考生对新情景的分析能力和综合运用知识的能力.把两个物体看做一个整体,由两个物体一起沿水平方向做匀速直线运动可知水平方向Ff=Fcosθ,选项C正确,D错误;设轻弹簧中弹力为F1弹簧方向与水平方向的夹角为α,隔离m2,分析受力,由平衡条件知,在竖直方向有,Fsinθ=m2g+F1sinα,隔离m1,分析受力,由平衡条件知,在竖直方向有,m1g=FN+F1sinα,联立解得,N=m1g+m2g-Fsinθ,选项A正确,B错误.
7.BC 太空中的国际空间站处于完全失重状态下,在此环境下与重力有关的仪器将不能使用.由重力产生的一切物理现象都会消失。如单摆停摆、天平失效、浸没于液体中的物体不再受浮力、水银气压计失效等,但测力的仪器中弹簧测力计是可以使用的,因为弹簧测力计是根据F=kx原理制成的,而不是根据重力制成的。在太空中,物体处于完全失重的状态.因此,在太空中天平、水银气压计就不能正常使用了.故A、D错误,B、C正确.
8.BC 选B、C由图线知,在t1~t2时间内,物块对传感器的压力大于重力,处于超重状态,A错误;由图线知,在t3~t4时间内,物块对传感器的压力小于重力,处于失重状态,B正确;在t1~t2时间内,物块可能向上加速运动,也可能向下减速运动,不能向下加速运动,在t3~t4时间内,物块可能向上减速,也可能向下加速,不可能向上加速运动或向下减速运动,C对,D错。
三、非选择题(共52分)
9.(8分)如下图所示,两轻环E和D分别套在光滑杆AB和AC上,AB与AC的夹角为θ,E和D用细线连接,一恒力F沿AC方向拉环D,当两环平衡时,细线与AC间的夹角为________,细线的拉力为________.
10.(8分)某人在以2.5 m/s2的加速度匀加速下降的升降机里最多能举起80 kg的物体,他在地面上最多能举起________kg的物体.若此人在一匀加速上升的升降机中最多能举起40 kg的物体,则此升降机上的加速度为________m/s2.
11.(12分)质量为60 kg的人,站在升降机中的体重计上,升降机做下列各种运动时,体重计的读数是多少?(g=10 m/s2)
(1)升降机匀速上升;
(2)升降机以4 m/s2的加速度加速上升;
(3)升降机以5 m/s2的加速度加速下降.
12.(10分)风筝(如下图甲)借助于均匀的风对其作用力和牵线对其拉力作用,才得以在空中处于平衡状态.如图乙,风筝平面AB与地面夹角为30°,牵线与风筝面夹角为53°,风筝质量为300 g,求风对风筝的作用力的大小.(风对风筝的作用力与风筝平面相垂直,取g=10 m/s2)
13.(14分)在倾斜角为θ的长斜面上,一带有风帆的滑块从静止开始沿斜面下滑,滑块(连同风帆)的质量为m,滑块与斜面间的动摩擦因数为μ、风帆受到向后的空气阻力与滑块下滑的速度v大小成正比,即f=kv.滑块从静止开始沿斜面下滑的v-t图象如下图所示,图中的倾斜直线是t=0时刻速度图线的切线.
(1)由图象求滑块下滑的最大加速度和最大速度的大小;
(2)若m=2 kg,θ=37°,g=10 m/s2,求出μ和k的值.(sin37°=0.6,cos37°=0.8)
答案
9.-θ
解析:D,E为轻环,重力不计,用力F拉D环时,稳定后,细线拉紧,且细线必与AB杆垂直,E环处于二力平衡状态,D环处于三力平衡状态.
两环稳定时,两环受力如下图所示.细线与AC间夹角为-θ;对D环,有FTcos=F,即FTsinθ=F,所以细线拉力FT=.
10.60 5
解析:人的举力是一定的,为F.
第一种情况m1g-F=m1a1,得F=600 N,
则在地面上举60 kg.
第二种情况F-m2g=m2a2,
得a2=5 m/s2.
11.(1)600 N (2)840 N (3)300 N
解析:体重计的读数即人对体重计压力的大小,因而分析人的受力情况,求出体重计对人的支持力FN,然后再由牛顿第三定律,即可得出体重计的读数,人站在升降机的体重计上受力情况如右图所示.
(1)当升降机匀速上升时,a=0.
由牛顿第二定律知,FN-mg=0.
所以FN=mg=600 N.由牛顿第三定律,人对体重计的压力,即体重计的示数为600 N.
(2)当升降机以4 m/s2的加速度加速上升时,有FN-mg=ma,所以FN=m(g+a)=60×(10+4)=840 N.
由牛顿第三定律,人对体重计的压力,即体重计的示数为840 N.(超重状态)
(3)当升降机以5 m/s2的加速度加速下降时,此时a的方向向下,有mg-FN=ma.
所以FN=m(g-a)=60×(10-5) N=300 N.
由牛顿第三定律知,人对体重计的压力,即体重计的示数为300 N.(失重状态)
12.4.6 N
解析:本题是一共点力平衡问题.风筝平衡时共受到三个力作用,即重力mg、风对它的作用力F和绳对它的拉力FT(如下图所示),AB方向为x轴,F方向为y轴,建立一个坐标系,将重力和拉力FT正交分解,根据平衡条件即能求得F的大小.
在x轴方向mgsin30°-FTsin37°=0,得
FT=mg/1.2=2.5 N
在y轴方向F=FTcos37°+mgcos30°=(2+3/2) N≈4.6 N.
13.(1)3 m/s2 2 m/s (2)μ=0.375 k=3 N·s/m
解析:(1)由图象可知滑块做加速度减小的加速运动,最终可达最大速度vm=2 m/s,t=0时刻滑块的加速度最大,即为v-t图线在O点的切线的斜率a===3 m/s2
(2)根据牛顿第二定律 mgsinθ-μmgcosθ-kv=ma,
将θ=37°,t=0时v=0、a=3 m/s2代入得μ=0.375,
将θ=37°及滑块达最大速度vm= 2 m/s时a=0代入得k=3 N·s/m.
课件19张PPT。第四章
牛顿运动定律 预
习
作
业课
后
作
业随
堂
作
业
用牛顿运动定律解决问题(二)