【全程复习方略】2014-2015学年高中物理选修3-2:52描述交变电流的物理量 课件+课时提升卷(2份,含详解)

文档属性

名称 【全程复习方略】2014-2015学年高中物理选修3-2:52描述交变电流的物理量 课件+课时提升卷(2份,含详解)
格式 zip
文件大小 2.8MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2014-11-05 09:18:07

文档简介

课件55张PPT。2 描述交变电流的物理量1.焦耳定律的公式:Q=____。
2.交变电流的瞬时值表达式:
(1)e=________;
(2)u=________;
(3)i=________。I2RtEmsinωtUmsinωtImsinωt一、周期和频率
1.周期:交变电流完成一次_______变化所需的时间,用T表
示。
2.频率:交变电流在1s内完成周期性变化的次数,用f表示,
单位是_____,符号是Hz。
3.二者关系:T=__或f=__。
4.ω的确定:i=Imsinωt的表达式中ω与f的关系为________。周期性赫兹ω=2πf二、峰值和有效值
1.峰值:
(1)定义:交变电流的电流或电压所能达到的_________。
(2)应用:电容器所能承受的电压要_____(选填“高于”或“低于”)交流电压的峰值。
2.有效值:
(1)定义:让交变电流和恒定电流通过大小相同的电阻,如果在交流的_________内它们产生的热量相等,这个恒定电流的电流、电压,叫作这个交流电的有效值。最大数值高于一个周期(2)应用:电气设备铭牌上标注的额定电压、额定电流都是
_______。交流电压表和交流电流表测量的也是_______。
3.有效值与峰值的关系:对于正弦交变电流,有效值I、U与峰
值Im、Um之间的关系:I=____,U=_____。 有效值有效值三、相位和相位差
1.定义:正弦交变电流u=Emsin(ωt+φ),其中“_______”
叫作交变电流的相位。两支交流的相位之差叫作它们的相位
差。
2.正弦交流电u1=Emsin(ωt+φ1)和u2=Emsin(ωt+φ2)的相
位差是_______。ωt+φφ2-φ1【思考辨析】
1.判断正误:
(1)交变电流在1s内电流方向变化的次数就是它的频率。
(  )
(2)交变电流的周期越大,交变电流的变化就越快。(  )
(3)交变电流的峰值可以用来表示电流的强弱或电压的高低。
(  )
(4)交变电流的有效值就是一个周期内的平均值。(  )
(5)交流电路中,电压表、电流表的测量值都是有效值。
(  )提示:(1)×。交变电流的方向每周期变化两次,而1s内完成周期性变化的次数叫作频率。
(2)×。交变电流的周期越大,交变电流的变化就越慢。
(3)√。交变电流的峰值可以用来表示电流的强弱和电压的高低。
(4)×。有效值和平均值物理意义不同,有效值不等于平均值。
(5)√。交流电路中,电压表、电流表的示数都是有效值。2.问题思考:
(1)在什么情况下要考虑交变电流的最大值?
提示:在接有电容器的交流电路中,要考虑交变电流的最大值。
(2)在什么情况下要考虑交变电流的有效值?
提示:计算交变电流电路的功率、热量以及用交流电表测定交变电流的大小时,都要考虑其有效值。一 交变电流有效值的理解和计算
1.交变电流有效值的求解:
(1)若是正弦式交变电流,可利用交变电流的有效值与峰值
间的关系求解,即
(2)若不是正弦式交变电流,则必须根据电流的热效应来求
解其有效值,且时间取一个周期。具体做法:假设让交变电流
通过电阻R,计算交变电流在一个周期内产生的热量Q(可分段
计算),其中热量Q用相应的物理量I或U来表示(如Q=I2Rt或
Q= ),则I或U为交变电流的相应有效值。2.几种常见电流的有效值:【特别提醒】(1) 只适用于正弦式交变电流,对于按其他规律变化的交变电流,上述关系式一般不再适用。
(2)对于非正弦式交变电流有效值的计算,时间一般选取一个周期。
(3)凡涉及能量、电功以及电功率等物理量时均用有效值,在确定保险丝的熔断电流时也用有效值。【典例1】(2013·运城高二检测)如图所示是一交变电流的
i -t图像,则该交变电流的有效值为( )
A.4 A B. A
C. A D. A【解题探究】(1)该交变电流的周期是_______ s。
(2)电流在前 T按正弦规律变化,故该时间段内的有效值
按I=____计算,后 时间内按_________计算。3×10-2恒定电流【标准解答】选D。由i-t图像知,该交变电流一个周期的时间
为3×10-2 s,前 周期为正弦交变电流,后 周期为恒定电
流,则该电流通过一个电阻R在1个周期内产生的热量
( )2R· T+Im2R· T=I2RT,可确定有效值I= A,故
D正确。【总结提升】求解有效值的一般方法技巧
(1)首先要分析交变电流的变化规律,正弦式电流的最大值和有效值的关系是 非正弦式交变电流一般不符合此关系。
(2)对于非正弦式交变电流,可在一个周期内分段求出产生的热量,再求热量的总和Q。将总热量Q用相应的物理量I或U来表示(如Q=I2Rt或Q= ),则I或U为其交变电流的相应有效值。【变式训练】(2013·海南高考)通过一阻值R=100 Ω的电阻的交变电流如图所示,其周期为1 s。电阻两端电压的有效值为( )
A.12 V B. V C.15 V D. V【解析】选B。根据图像,一个周期T=1 s,设该交变电流的有
效值为U,0~0.4 s的时间间隔为t1=0.4 s,0.4~0.5 s的时
间间隔t2=0.1 s,根据电流的热效应,由
2(I12Rt1+I22Rt2)= 解得U= V,B正确。【变式备选】如图所示为一交变电流随时间变化的图像,从t=0时刻开始,每半个周期时间内的图像均为正弦曲线,求此交变电流的有效值。 【解析】选择一个周期的时间,利用在相同时间内通过相同的电阻所产生的热量相同,由焦耳定律求得I2RT=
其中I1= A,I2= A,解得I= A。
答案: A 二 正弦式交变电流的“四值”对比和应用
交变电流“四值”辨析:【特别提醒】(1)交变电流的平均值与对应的时间有关,不同时间内的平均值一般不同。
(2)平均值是交变电流图像中图线与时间轴所夹面积与时间的比值,平均电动势可以用电磁感应定律计算,即【典例2】如图所示,矩形线圈abcd在磁感
应强度B=2T的匀强磁场中绕轴OO′以角速
度ω=10πrad/s匀速转动,线圈共10匝,
电阻r=5Ω,ab=0.3m,bc=0.6m,负载电阻
R=45Ω。
(1)写出从图示位置开始计时的线圈中感应电动势的瞬时值表达式;
(2)求电阻R在0.05s内产生的热量;
(3)求0.05s内流过电阻R上的电荷量(设线圈从垂直中性面开始转动)。【解题探究】(1)图示位置线圈平面和磁场方向_____,感应电动势为_______。
(2)计算热量和电荷量分别应用交变电流的哪个值?
提示:计算热量应用有效值;计算电荷量应用平均值。平行最大值【标准解答】(1)电动势的最大值为Emax=nBSω=10×2×0.3×0.6×10πV≈113.04 V
由于从线圈平面经过与磁感线平行的位置开始计时,交变电流为最大值,故瞬时值表达式e=Emax·cosωt=113.04cos10πtV
(2)电流的有效值
所以0.05 s内R上产生的热量
Q=I2Rt=5.76 J(3)平均感应电动势为:
平均感应电流为:
所以通过电阻R的电荷量为:q= ·t=0.072 C。
答案:(1)e=113.04cos10πt V (2)5.76 J
(3)0.072 C【变式训练】(多选)(2013·山东高考)图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场, 为交流电流表。线圈绕垂直于磁场的水平轴OO′沿逆时针方向匀速转动,从图示位置开始计时,产生的交变电流随时间变化的图像如图乙所示。以下判断正确的是(  )A.电流表的示数为10 A
B.线圈转动的角速度为50πrad/s
C.0.01 s时线圈平面与磁场方向平行
D.0.02 s时电阻R中电流的方向自右向左【解析】选A、C。电流表示数显示的是交流电的有效值,正弦
交流电的电流有效值等于最大值的 倍,电流表的示数为
10 A,选项A正确;因为交流电的瞬时值为i= cosωt,根
据图乙可知,交流电的周期为T=2×10-2s,则线圈转动的角
速度为ω= =100π rad/s,选项B错误;0时刻线圈平面与磁
场平行,t=0.01 s= ,t时间内线圈转过π弧度,线圈平面
与磁场方向平行,选项C正确;0.02 s时的情况与0时刻的情况
相同,根据右手定则可以判定,此时通过电阻R的电流方向自
左向右,选项D错误。【典例】如图所示,线圈abcd的面积是
0.05m2,共100匝,线圈电阻为1Ω,外
接电阻R=9Ω,匀强磁场的磁感应强度为
B= T,当线圈以300r/min的转速匀速转
动时,求:
(1)转动中感应电动势的最大值和有效值。
(2)电路中交流电压表和电流表的示数。
(3)线圈从图示位置转过90°的过程中通过电阻R的电量。【标准解答】(1)Em=NBSω=100× ×0.05×2π× V
=50 V,
(2)电流表示数:I= =3.54 A
电压表示数:U=IR=3.54×9 V=31.86 V。
(3)从图示位置转过90°的过程中, ,又因为
所以
答案:(1)50 V 35.4 V (2)31.86 V 3.54 A
(3)0.16 C计算电阻上产生热量与通过电量的技巧
交变电流在通过电阻时既要产生热量也要通过电量,虽然这两个物理量只有一字之差,但在计算热量和电量时要分别利用电流的有效值和平均值,分析此类问题时要注意以下三点:
(1)明确热量是与做功有关的物理量,所以求解电流产生的热量要用电流的有效值来计算;
(2)电量是电流对时间的积累,所以求解电量时要用电流的平均值来计算;
(3)此类题目往往不会直接给出电流的有效值或平均值,而是会在计算中体现出来。【案例展示】(2013·南京高二检测)小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场的固定轴转动,线圈匝数n=100。穿过每匝线圈的磁通量Φ随时间t按正弦规律变化,如图所示。发电机内阻r=5.0Ω,外电路电阻R=95Ω。求:
(1)一个周期内线圈发热产生的热量。
(2)线圈从中性面起转动半周的过程中,流过R的电量。【标准解答】(1)根据题意Em=nBSω=nΦmω
Im= ,I= 解得:电流有效值I= A。
线圈产生的热量
Q=I2rt=( )2×5×2π×10-2 J=0.157 J。
(2)从中性面开始半个周期内,平均感应电动势
平均电流
电荷量q= Δt,即
代入数据解得q=2×10-2 C。
答案:(1)0.157 J (2)2×10-2 C【名师点评】通过本题的分析过程可以看出,求解热量和电荷量思路不同。
(1)求解热量,按以下思路:
(2)求解电荷量,按以下思路:1.(多选)(基础理论辨析题)关于交变电流的描述,下列说法正确的是(  )
A.表示交变电流变化快慢的物理量是周期或频率
B.电容器所能承受的电压要大于交变电流的有效值
C.正弦交变电流的有效值等于其最大值的二分之一
D.交变电流的有效值是由电流的热效应来定义的
E.电气设备上所标的额定电压是交变电流电压的最大值
F.我们可以用电压表直接测量交流电路中电压的最大值和瞬时值【解析】选A、D。交变电流变化的快慢用周期或频率表示,A正确;电容器所能承受的电压要大于交变电流的最大值,B错误;正弦交变电流的有效值等于其最大值的 ,C错误;交变电流的有效值可以用一个周期产生的热量相等来定义,D正确;电气设备上所标的额定电压是有效值,E错误;交流电压表直接测量的是有效值,无法测量最大值和瞬时值,F错误。2.(多选)某交变电流的方向在1s内改变100次,则其周期T和频率f分别为(  )
A.T=0.01s B.T=0.02s
C.f=100Hz D.f=50Hz
【解析】选B、D。由于正弦式交变电流每周期内方向改变两次,所以其频率为50Hz,由T= 得T=0.02s。3.(2013·扬州高二检测)2 A的直流电流通过电阻R时,t时间内产生的热量为Q。现让一交变电流通过电阻R,若2t时间内产生的热量为Q,则交变电流的最大值为( )
A.1 A B.2 A
C. A D. A
【解析】选B。设交变电流有效值为I,则I2·R·2t=
22·R·t,故I= A。交变电流的最大值Im= I=2 A。B正确。4.(多选)(2013·青岛高二检测)一交流电压为u=
sin100πtV,由此表达式可知( )
A.用电压表测该电压其示数为100 V
B.该交流电压的周期为0.02 s
C.将该电压加在“100 V 100 W”的灯泡两端,灯泡的实际功率小于100 W
D.t= s时,该交流电压的瞬时值为50 V【解析】选A、B。电压有效值为100 V,故用电压表测该电压其示数为100 V,A项正确;ω=100π rad/s,则周期T=
=0.02 s,B项正确;该电压加在“100 V 100 W”的灯泡两端,灯泡恰好正常工作,C项错;t= s代入瞬时值表达式得电压的瞬时值为100 V,D项错。5.两只相同的电阻,分别通过正弦波形的交流电和方波形的交流电。两种交变电流的最大值相等,波形如图甲、乙所示。在一个周期内,两电阻产生的热量之比 等于(  )【解析】选B。计算电阻产生的热量Q需用交流电的有效值,图
甲的有效值为I1= ,图乙的有效值为I2=Im,所以代入公式
Q=I2Rt可得 。故B正确。6.如图所示为一交变电流的图像,则该交变电流的有效值为多大?【解析】令该交变电流通过一电阻R,它在前半周期 内通过
该电阻产生的热量Q1=( )2R· = ,它在后半周期
内产生的热量Q2=I02R· = ,故在一个周期内产生的热量
Q=Q1+Q2= I02RT,设某一恒定电流I在相同的时间T内通过该电
阻产生的热量为I2RT,由有效值的定义知: I02RT=I2RT,解
得I= I0。
答案: I07.(2013·杭州高二检测)如图所示,匀强磁场的磁感应强度B=0.5T,边长L=10cm的正方形线圈abcd共100匝,线圈电阻r=1Ω,线圈绕垂直于磁感线的对称轴OO′匀速转动,角速度ω=2πrad/s,外电路电阻R=4Ω。求:(1)转动过程中感应电动势的最大值。
(2)由图示位置(线圈平面与磁感线平行)转过60°角时的瞬时感应电动势。
(3)由图示位置转过60°角的过程中产生的平均感应电动势。
(4)交变电压表的示数。【解析】(1)感应电动势的最大值为
Em=nBωS=100×0.5×2π×(0.1)2V=3.14 V。
(2)转过60°角时的瞬时感应电动势为
e=Emcos60°=3.14×0.5V=1.57 V。
(3)由图示位置转过60°角的过程中产生的平均感应电动势为(4)电压表示数为外电路电压的有效值
答案:(1)3.14 V (2)1.57 V (3)2.6 V
(4)1.78 V温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
课时提升卷(八)
描述交变电流的物理量
(40分钟 50分)
一、选择题(本题共5小题,每小题6分,共30分)
1.(多选)(2013·汕头高二检测)线圈在匀强磁场中匀速转动,产生的交变电流如图所示,则(  )
A.在A和C时刻线圈平面和磁场平行
B.在A和C时刻线圈平面和磁场垂直
C.在B时刻线圈中的磁通量为零
D.若线圈转动的周期为0.02s,则该交变电流的频率为50Hz
2.标有“220V 0.5μF”字样的电容器能接入下面哪个电路中使用(  )
A.220sin100πtV     B.220V的照明电路中
C.380sin100πtV D.380V的动力电路中
3.如图所示是某正弦式交流发电机产生的感应电动势e与时间t的关系图像。如果其他条件不变,仅使线圈的转速变为原来的二倍,则感应电动势的最大值和周期分别变为(  )
A.220 V,0.02 s B.311 V,0.01 s
C.440 V,0.01 s D.440 V,0.02 s
4.(多选)(2013·黔东南高二检测)一个矩形线圈在匀强磁场中匀速转动,产生的交变电动势e=220sin100πt(V),那么(  )
A.该交变电流的频率是50Hz
B.当t=0时,线圈平面恰好位于中性面
C.当t=s时,e有最大值
D.该交变电流电动势的有效值为220V
5.(2013·焦作高二检测)在匀强磁场中,一矩形金属线框绕与磁感线垂直的转动轴匀速转动,如图甲所示。产生的交变电动势随时间变化的规律如图乙所示。则下列说法正确的是(  )
A.t=0.01s时穿过线框的磁通量最小
B.该交变电动势的有效值为11V
C.该交变电动势的瞬时值表达式e=22cos(100πt)V
D.电动势瞬时值为22V时,线圈平面与中性面的夹角为45°
二、非选择题(本题共2小题,共20分。需写出规范的解题步骤)
6.(8分)如图所示,ab=25cm、ad=20cm,匝数为50匝的矩形线圈,线圈总
电阻r=1Ω,外电路电阻R=9Ω,磁感应强度B=0.4T。线圈绕垂直于磁感线
的OO′轴以角速度50rad/s匀速转动。求:
(1)从此位置开始计时,它的感应电动势的瞬时值表达式。
(2)1min内R上消耗的电能。
7.(12分)(能力挑战题)如图所示,边长为L的正方形线圈,匝数为n,线圈电阻为r,外电路的电阻为R,磁感应强度为B,电压表为理想交流电压表。现在线圈以角速度ω绕垂直于磁感线的对称轴OO′匀速转动,从线圈平面与磁感线平行时开始计时。试求:
(1)闭合电路中电流瞬时值的表达式。
(2)电压表的示数。
(3)线圈从t=0开始,转过90°的过程中,电阻R上通过的电荷量。
答案解析
1.【解析】选A、D。在A和C时刻交变电流为最大值,该时刻线圈平面和磁场平行,故A正确,B错误;B时刻线圈中磁通量为最大,C错误;根据f=,D正确。
2.【解析】选A。电容器上标的电压为电容器的最大耐压值。A项中的最大值为220 V,故符合要求,A项正确;B、C、D中的最大值均超过220 V,将击穿电容器,故B、C、D均错。
3.【解题指南】对于感应电动势的最大值和周期,要明确由哪些物理量来决定,再通过公式确定这两个量的变化。
【解析】选C。由正弦式交变电流的图像可得原来交变电流电动势的最大值为220 V、周期为0.02s,线圈的转速变为原来的二倍,由Em=NBSω可知,感应电动势的最大值变为原来的两倍,即440V,而周期变为原来的一半,即0.01 s,C项正确。
4.【解析】选A、B。由瞬时值表达式知f=50Hz,A正确;当t=0时,e=0,故线圈恰好位于中性面, B正确;当t=s时,e=0,C错误;该交变电流电动势最大值为220V,D错误。
5.【解析】选D。t=0.01s时感应电动势为零,穿过线框的磁通量最大,选项A错误;该交变电动势的有效值为22V,选项B错误;该交变电动势的瞬时值表达式为e=22sin(100πt)V,选项C错误;根据该交变电动势的瞬时值表达式可知,电动势瞬时值为22V时,线圈平面与中性面的夹角为45°,选项D正确。
【变式备选】(多选)一矩形金属线圈绕垂直磁场方向的转轴在匀强磁场中匀速转动,线圈中产生的电动势e随时间t变化的情况如图所示。下列说法正确的是(  )
A.此交流电的频率为0.5Hz
B.此交流电的电动势有效值为2 V
C.t=0.01s时,线圈平面与磁场方向垂直
D.t=0.02s时,线圈磁通量变化率为零
【解析】选C、D。由图像可以看出,交变电流是正弦式电流,最大值为2V,周期T=0.02s,所以频率f==50Hz;电动势的有效值E==V,所以选项A、B错;在t=0.01s和t=0.02s时,感应电动势为零,线圈各边都不切割磁感线,线圈平面与磁场方向垂直,线圈磁通量变化率为零,C、D选项正确。
6.【解析】(1)电动势的最大值为
Em=NBSω=50×0.4×0.25×0.20×50V=50 V,
所以感应电动势的瞬时值表达式为
e=Emcosωt=50cos50tV。
(2)1min内R上消耗的电能即为电流通过R做的功
W=I2Rt=[]2Rt=6750J。
答案:(1)e=50cos50tV(2)6750J
【总结提升】交变电流平均值的计算方法
(1)可以用图线与横轴(t轴)所围的面积跟时间的比值来表示交变电流在一定时间内的平均值,经常用、、符号来表示。
(2)交变电流的平均值是针对某一过程的物理量,在不同的时间段内平均值一般不相同。它的计算公式为=n。例如,对于正弦交变电流,其前半周期或后半周期的平均电动势的大小为=n=n=nBSω,而在一个周期内的平均电动势却为零。在计算某一段时间内通过导体横截面的电荷量时,一定要代入平均值来计算。
(3)用法拉第电磁感应定律E=n和欧姆定律I=计算。注意平均值不等于有效值。求一段时间内通过导体横截面的电荷量时要用交流电的平均值q=t,而不能用有效值。当交流电电流方向发生改变时,应考虑分段进行计算。
7.【解析】(1)线圈转动时,电动势的最大值Em=nBωL2由闭合电路的欧姆定律得:最大电流Im=
从垂直中性面开始计时,故闭合电路中电流瞬时值的表达式为:i=cosωt。
(2)电路中电流的有效值I=
则电压表的示数U=IR=。
(3)由于R与线圈串联,则电阻R上通过的电荷量与通过线圈的电荷量相等
因q=Δt,而==,所以q==。
答案:(1)i=cosωt(2)(3)
关闭Word文档返回原板块