北师大版数学九年级上册 第三章 概率的进一步认识检测卷2(含答案)

文档属性

名称 北师大版数学九年级上册 第三章 概率的进一步认识检测卷2(含答案)
格式 doc
文件大小 118.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2023-07-29 19:25:55

图片预览

文档简介

单元测试(三) 概率的进一步认识
(时间:45分钟 满分:100分)
一、选择题(每小题3分,共30分)
1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )
A. B. C. D.
2.(新疆中考)在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )
A. B. C. D.
3.(玉林中考)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
4.(南通中考)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )
A.12 B.15 C.18 D.21
5.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )
A. B. C. D.
6.(台湾中考)有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )
A. B. C. D.
7.(临沂中考)从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )
A. B. C. D.
8.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )
A. B. C. D.
9.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( )
A.3 B.4 C.5 D.6
10.(大庆中考)如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a,b,将其作为M点的横、纵坐标,则点M(a,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )
A. B. C. D.
二、填空题(每小题4分,共20分)
11.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是____.
12.(扬州中考)色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:
抽取的体检表数n 50 100 200 400 500 800 1 000 1 200 1 500 2 000
色盲患者的频数m 3 7 13 29 37 55 69 85 105 138
色盲患者的频率 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069
根据上表,估计在男性中,男性患色盲的概率为________(结果精确到0.01).
13.(襄阳中考)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.
14.(凉山中考)“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.
15.如图,小明和小丁做游戏,分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分,当所转到的数字之积为偶数时,小丁得1分,这个游戏公平吗?________.
三、解答题(共50分)
16.(8分)一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几,棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)
17.(10分)(陕西中考)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:
(1)小亮掷得向上一面的点数为奇数的概率是多少?
(2)该游戏是否公平?请用列表或树状图等方法说明理由.
(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)
18.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:
摸球总次数 10 20 30 60 90 120 180 240 330 450
“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150
“和为8”出现的频率 0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33
解答下列问题:
(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;
(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图说明理由;如果x的值不可以取7,请写出一个符合要求的x值.
19.(10分)(曲靖中考)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.
甲说:我随机抽取一张,若抽到字母B,电影票归我;
乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.
(1)求甲获得电影票的概率;
(2)求乙获得电影票的概率;
(3)此游戏对谁有利?
20.(12分)“五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图所示是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:
(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示);
(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),则员工小胡抽到去甲地的车票的概率是多少?
(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.”试用列表法或画树状图的方法分析这个规则对双方是否公平?
参考答案
1.D 2.C 3.C 4.B 5.D 6.A 7.C 8.A 9.B 10.B
11. 12.0.07 13. 14. 15.公平 
16.用列表法表示为
1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
由表格可知,两数和为4出现的次数最多,棋子走到E点的可能性最大,P(走到E点)==. 
17.(1)P==.(2)游戏公平.理由如下:
   小亮小丽    1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)==,P(小丽胜)==.∴该游戏是公平的. 
18.(1)0.33 (2)不可以取7.∵当x=7时,列表如下(也可以画树状图):
3 4 5 7
3 7 8 10
4 7 9 11
5 8 9 12
7 10 11 12
∴两个小球上数字之和为9的概率是=≠,当x=5时,两个小球上数字之和为9的概率是.(答案不唯一,也可以是4、6). 
19.(1)P(甲获得电影票)=.
(2)可能出现的结果如下(列表法):
A B B
A (A,A) (A,B) (A,B)
B (B,A) (B,B) (B,B)
B (B,A) (B,B) (B,B)
共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=.(3)∵>,∴此游戏对甲更有利. 
20.(1)根据题意得:(20+40+30)÷(1-10%)=100(张),则去丁地车票数为100-(20+40+30)=10(张),补全图形,如图所示.(2)总票数为100张,去甲地票数为20张,则员工小胡抽到去甲地的车票的概率为=
.(3)列表如下:
  小王 小李) 1 2 3 4
1 (1,1) (2,1) (3,1) (4,1)
2 (1,2) (2,2) (3,2) (4,2)
3 (1,3) (2,3) (3,3) (4,3)
4 (1,4) (2,4) (3,4) (4,4)
所有等可能的情况数有16种,其中小王掷得数字比小李掷得的数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴P(小王掷得的数字比小李小)==,P(小王掷得的数字不小于小李)=1-=.∴这个规则不公平.