2022-2023 学年哈尔滨市依兰县多校高一(下)期末 物理试卷
一、单选题(本大题共 7 小题,共 28 分)
1. 如图所示,小明玩蹦蹦杆,在小明将蹦蹦杆中的弹簧向下压缩的过程中,小明的重力势
能、弹簧的弹性势能的变化是( )
A. 重力势能减少,弹性势能增大 B. 重力势能增大,弹性势能减少
C. 重力势能减少,弹性势能减少 D. 重力势能不变,弹性势能增大
2. 如图所示,洗衣机脱水桶正以每分钟 1200 转的转速匀速转动,关于贴在
脱水桶内壁的一块毛巾,下列说法正确的是( )
A. 毛巾转动的线速度不变
B. 毛巾转动的速率不变
C. 毛巾转动的加速度不变
D. 毛巾受到的桶壁的弹力不变
3. 2021 年 4 月 29 日,在海南文昌卫星发射中心,长征五号B遥二运载火箭成功将空间站 “天和核心舱 ”送入离地高约 450km的预定圆轨道,中国空间站在轨组装建造全面展开,预 计到 2022 年 11 月正式完成中国空间站的建设。设“天和核心舱 ”的发射速度为v0 ,“天和
核心舱 ”在预定圆轨道的运行速度为v1 ,关于这两个速度大小的说法正确的是( )
A. v0 > 7.9km/s ,v1 > 7.9km/s B. v0 > 7.9km/s ,v1 < 7.9km/s
C. v0 < 7.9km/s ,v1 < 7.9km/s D. v0 < 7.9km/s ,v1 > 7.9km/s
4. 如图所示,a为放在赤道上的物体;b为沿地球表面附近做匀速
圆周运动的人造卫星;C为地球同步卫星.以下关于a 、b 、C 的说法
中正确的是( )
A. a 、b 、c作匀速圆周运动的向心加速度大小关系为aa > ab > ac
B. a 、b 、c作匀速圆周运动的向心加速度大小关系为ac > ab > aa
C. a 、b 、c作匀速圆周运动的线速度大小关系为va > vb > vc
D. a 、b 、c作匀速圆周运动的周期关系为Ta = TC > Tb
5. 如图,在一光滑的水平面上,有质量相同的三个小球A 、B 、C ,
其中B 、C静止,中间连有一轻弹簧,弹簧处于自由伸长状态,现小
球A以速度v与小球B正碰并粘在一起,碰撞时间极短,则在此碰撞过程中( )
A. A 、B的速度变为,C的速度仍为 0 B. A 、B 、C的速度均为
C. A 、B的速度变为,C的速度仍为 0 D. A 、B 、C的速度均为
6. 玩“套圈圈 ”游戏时,身材高大的哥哥和身高较矮的弟弟
站在同一位置,两人同时向正前方水平地面上的玩具小熊水平
抛出圆环,圆环恰好都套中玩具小熊。若圆环离手后的运动可
视为平抛运动,它们的初速度分别为v1 与v2,重力加速度为g,
下列说法正确的是( )
A. 哥哥先套住玩具熊 B. 两人同时套住玩具熊
C. v1 < v2 D. v1 = v2
7. 图甲中,长为L的长木板M静止于光滑水平面上,小物块m位于木板的右端点.t = 0 时,
木板以速度v0 开始向右滑动,小物块恰好没有从长木板上滑落,重力加速度为g. 图乙为物块 与木板运动的v t 图像,则( )
A. 物块质量是木板质量的
B. 物块与木板间的动摩擦因数为
C. 0~t 0 内,物块与木板损失的动能为木板初动能的
D. 物块的最大动能是木板初动能的
二、多选题(本大题共 3 小题,共 18 分)
8. 如图所示,在倾角为θ的光滑固定斜面上,一物块(可看
成质点)从斜面左上方沿水平方向射入,然后沿斜面下滑,
最后从底端右侧离开斜面,重力加速度为g,不计空气阻力,
下列说法正确的是( )
A. 物块在斜面上运动的轨迹是直线 B. 物块在斜面上运动的轨迹是抛物线
C. 物块运动过程中的加速度大小为g D. 物块运动过程中的加速度大小为gsinθ
9. 如图所示,汽车通过轻质光滑的定滑轮,将一个质量为m 的物
体从井中拉出,绳与汽车连接点距滑轮顶点高 , 开始时物体静止,
滑轮两侧的绳都竖直绷紧,汽车以v 向右匀速运动,运动到跟汽车连
接的细绳与水平方向的夹角为 30° , 则( )
A. 从开始到绳与水平方向的夹角为 30° 时,拉力做功等于mg
B. 当绳与水平方向的夹角为 30° 时,物体上升的速度为 v
C. 当绳与水平方向的夹角为 30° 时,物体上升的速度为 v
D. 在绳与水平方向的夹角为 30° 时,拉力功率大于mg v
10. 为了对大气二氧化碳进行全天时、高精度监测,我国研制的全
球首颗搭载主动激光雷达的大气环境监测卫星。与地球同步轨道卫星
(图中卫星 1)不同,大气环境监测卫星(图中卫星 2)是轨道平面与赤
道平面夹角接近 90° 的卫星,一天内环绕地球飞 14 圈。下列说法正
确的是( )
A. 卫星 1 的周期大于卫星 2 的周期 B. 卫星 1 与卫星 2 的轨道半径相等
C. 卫星 1 的线速度小于卫星 2 的线速度 D. 卫星 1 与卫星 2 的向心加速度大小相等
三、实验题(本大题共 2 小题,共 14 分)
11. 在利用自由落体“验证机械能守恒定律 ”的实验中:
图 1 图 2
(1)下列器材中(如图 1)不必要的一项是 (只需填字母代号).
A.重物 B.纸带 C.天平 D.低压交流电源 E.毫米刻度尺
(2)关于本实验的误差,说法不正确的一项是
A.选择质量较小的重物,有利于减小误差
B.选择点击清晰且第 1、2 两点间距约为 2mm的纸带,有利于减小误差
C.先松开纸带后接通电源会造成较大的误差
D.实验产生误差的主要原因是重物在下落过程中不可避免地受到阻力的作用
(3)在实验中,质量m = 1kg的物体自由下落,得到如图 2 所示的纸带,相邻计数点间的时间 间隔为 0.04s,那么从打点计时器打下起点。到打下B点的过程中,物体重力势能的减少量Ep = J,此过程中物体动能的增加量Ek = J。(取g = 9.8m/s2 ,保留三位有效数字) 12. 如图甲所示为“验证碰撞中动量守恒 ”实验的装置示意图,a是入射小球,b是被碰小 球,a和b的质量分别为m1和m2 ,直径分别为d1和d2 ,轨道末端在水平地面上的投影为。点。 实验中,先将小球a从斜槽上某一固定位置由静止释放,a从斜槽末端飞出后落到水平地面的 记录纸上留下落点痕迹,重复 10 次,描出a的平均落点位置p,再把小球b放在斜槽末端,让 小球a仍从斜槽上同一位置由静止释放,与小球b碰撞后,两球分别在记录纸上留下落点痕迹,
重复 10 次,描出碰后小球a、b的平均落点位置M、N如图乙所示。
(1)实验中需要注意的事项,下列说法正确的是 (填字母)。
A.需要测出小球抛出点距地面的高度H
B.需要测出小球做平抛运动的水平射程
C.为完成此实验,天平和刻度尺是必需的测量工具
D.斜槽轨道末端应该保持水平
E.斜槽应尽量光滑
(2)实验中重复多次让入射小球从斜槽上的同一位置释放,其中“ 同一位置释放 ”的目的是
。
______
(3)实验中对小球的要求是:质量m1 (填“> ”“= ”或“< ”)m2 ,直径d1 (填
“> ”“= ”或“< ”)d2。
(4)在图乙中,用毫米刻度尺测得。点与M 、P、N三点的水平方向的距离分别为x1 ,x2 ,x3,
若关系式 成立,则说明该实验碰撞前后动量守恒。
四、计算题(本大题共 3 小题,共 40 分)
13. 图甲为“海洋和谐号 ”游轮,它是目前世界上最大的游轮,假设其总质量M = 2.5 ×
108kg ,发动机额定输出功率P = 6 × 107 w,某次航行过程中,“海洋和谐号 ”游轮从静止 开始在海面上做直线运动,其加速度— 时间图像如图乙所示,在T = 20S时,发动机输出功率
达到额定输出功率,此后保持不变假设航行过程中所受阻力恒定不变,求:
(1)游轮航行过程中所受的阻力大小;
(2)游轮行驶的最大速度。
14. 城市进入高楼时代后,高空坠物已成为危害极大的社会安全问题,由物理学知识可知, 即使是很小的物体从高处坠落也可能对人造成严重的伤害。设一个 50g的鸡蛋从 16 楼的窗户 自由落下,相邻楼层的高度差约为 3m ,鸡蛋下落起点距地面的高度约为 45m,鸡蛋撞击地
面后速度减为 0。为便于估算,不计空气阻力,不计与地面撞击过程中鸡蛋的重力,g取 10m/S2。
(1)求鸡蛋与地面撞击前的速度大小以及撞击过程中地面对鸡蛋作用的冲量大小; (2)若鸡蛋与地面撞击的时间为 3 × 10 3S,求鸡蛋对地面的平均冲击力的大小。
15. 如图所示,一半径T = 0.2m的光滑圆弧形槽底B与水平传送带相接,传送带的运行速度 为v0 = 4m/s ,长为L = 1.25m ,滑块与传送带间的动摩擦因数μ = 0.2 ,DEF为固定于竖直平 面内的一段内壁光滑的中空方形细管,EF段被弯成以0为圆心,半径R = 0.25m的一小段圆弧, 管的D端弯成与水平传带C端平滑相接,0点位于地面,0F连线竖直,一质量为M = 0.2kg的 滑块a从圆弧顶端A点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管 DEF ,已知a滑块可视为质点,a横截面略小于管中空部分的横截面,重力加速度g取 10m/s2 .
求:
(1)由于滑块在传送带上运动,电动机所消耗的电能;
(2)滑块a 刚到达管顶F点时对管壁的压力;
(3)若让滑块通过F点,则传送带的最小速度可以是多少?
答案和解析
1.【答案】A
【解析】
【分析】
重力势能的变化可根据重力做功判断;
弹性势能的变化可根据弹簧的形变量的变化判断.
解决本题的关键要掌握重力做功与重力势能变化的关系、弹性势能与弹簧的形变量的关系.
【解答】
解:在小明将蹦蹦杆中的弹簧向下压缩的过程中,重力做正功,则小朋友的重力势能减少.弹簧
的形变量增大,其弹性势能增加,故 A 正确,BCD 错误.
故选:A .
2.【答案】B
【解析】解:AB 、贴在脱水桶内壁的毛巾随着脱水桶一起做匀速圆周运动,线速度大小不变,方
向改变,即速率不变,故 A 错误,B 正确;
C、贴在脱水桶内壁的毛巾随着脱水桶一起做匀速圆周运动,加速度大小不变,方向总是指向圆
心,故 C 错误;
D 、毛巾受到的桶壁的弹力提供向心力,大小不变,方向总是指向圆心,即方向改变,故 D 错误。
故选:B。
毛巾随着脱水桶一起做匀速圆周运动,线速度大小不变,方向改变,向心加速度大小不变,方向
时刻变化;毛巾受到的桶壁的弹力大小不变,方向时刻变化。
本题以洗衣机脱水桶工作的示意图为情景载体,考查了匀速圆周运动问题在实际生活中的应用,
解决此题的关键是要理解矢量不变指大小和方向都不变。
3.【答案】B
【解析】解:7.9km/s是地球的第一宇宙速度,是发射卫星的最小速度,也是卫星最大的环绕速
度,故“天和核心舱“ 的发射速度不可能小于 7.9km/s ,“天和核心舱“在圆轨道上运行速度不
可能大于 7.9km/s ,即v0 > 7.9km/s ,v1 < 7.9km/s ,故 B 正确,ACD 错误。
故选:B。
7.9km/s是地球的第一宇宙速度,是发射卫星的最小速度,也是卫星最大的环绕速度, 由此分析
“天和核心舱 ”的发射速度和在预定圆轨道的运行速度的大小。
本题主要是考查第一宇宙速度和环绕速度,知道第一宇宙速度是最小的发射速度,是最大的环绕
速度。
4.【答案】D
【解析】解:A、地球赤道上的物体与同步卫星具有相同的角速度,所以幼a = 幼c ,根据a = T幼2 知,c的向心加速度大于a的向心加速度.根据a = 得b的向心加速度大于c的向心加速度.故 A、
B 错误.
C、地球赤道上的物体与同步卫星具有相同的角速度,所以幼a = 幼c ,根据v = T幼,c的线速度大
于a的线速度.故 C 错误
D 、卫星C为同步卫星,所以Ta = Tc ,根据T = 2π T3 得c的周期大于b的周期,故 D 正确
GM
故选 D .
地球赤道上的物体与同步卫星具有相同的角速度和周期,根据v = T幼,a = T幼2 比较线速度的大小 和向心加速度的大小,根据万有引力提供向心力比较b、c的线速度、角速度、周期和向心加速度
大小.
地球赤道上的物体与同步卫星具有相同的角速度和周期,根据v = T幼,a = T幼2 比较线速度的大小 和向心加速度的大小,根据万有引力提供向心力比较b、c的线速度、角速度、周期和向心加速度
大小.
5.【答案】C
【解析】解:A、B碰撞过程时间极短,弹簧没有发生形变,A、B系统所受合外力为零,系统动量
守恒,以向右为正方向,由动量守恒定律得:mv = 2mv′,解得:v ′= ,A、B碰撞过程,C
所受合外力为零,C的动量不变,C保持静止,速度仍为 0,故 ABD 错误,C 正确;
故选:C。
系统所受合外力为零,系统动量守恒,根据题意,应用动量守恒定律分析答题.
本题考查了动量守恒定律的应用,分析清楚物体运动过程,应用动量守恒定律可以解题,本题难
度不大,是一道基础题.
6.【答案】C
(
2
) (
,
) (
g
)【解析】解:AB 、设抛出的圆环做平抛运动的初速度为v ,高度为 , 则下落的时间为t =
平抛运动的圆环飞行时间由高度决定,所以身高较矮的弟弟先套住玩具熊,故 AB 错误;
CD 、水平方向位移x = vt = v 2 , x相同,可知哥哥抛环的初速度小,即v1 < v2 ,故 C 正确,D
g
错误。
故选:C。
圆环做平抛运动,把平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运 动来分析,两个方向上运动的时间相同。平抛运动的物体飞行时间由高度决定,结合水平位移和
时间分析初速度关系。
本题对平抛运动规律的考查,平抛运动可以分解为在水平方向上的匀速直线运动,和竖直方向上
的自由落体运动来求解。
7.【答案】B
【解析】
【分析】
长木板与小物块组成的系统动量守恒,应用动量守恒定律求出物块的质量;应用能量守恒定律可 以求出物块与木板间的动摩擦因数;应用能量守恒定律可以求出物块与木板损失的动能;根据动
能的计算公式可以求出木板获得的动能。
本题考查了动量守恒定律的应用,根据题意结合图示图象分析清楚木板与物块的运动过程是解题
的前提,应用动量守恒定律与能量守恒定律可以解题。
【解答】
A.长木板与小物块组成的系统所受合外力为零,系统动量守恒,以向右为正方向,由动量守恒定
律得:Mv0 = (m + M) × v0 ,解得:m = M ,故 A 错误;
B.小物块恰好没有从长木板上滑落,小物块相对长木板滑行的距离等于木板长度L ,设物块与木板
间的动摩擦因数为μ , 对小物块与长木板组成的系统,由能量守恒定律得:Mv0 (2) = (m + M) ×
( 4 (3) v0)2 + μmgL ,解得:μ = 8g (3v) ,故 B 正确;
C. 由能量守恒定律可知,0~t0 内物块与木板损失的动能△ Ek = Mv0 (2) (m + M) × ( v0 )2 =
Mv0 (2) = × Mv0 (2) ,损失的动能为木板初动能的,故 C 错误;
D.物块获得的最大动能E木块k = m ( v0)2 = Mv0 (2) = × Mv0 (2) ,故 D 错误。
8.【答案】BD
【解析】解:AB.物块受重力和支持力作用,合力始终沿斜面向下,与初速度方向垂直;物块在水 平方向上不受外力作用,做匀速运动,沿斜面方向受重力的分力作用,做匀加速直线运动,物块
在斜面上做类平抛运动,运动轨迹为抛物线,故 A 错误,B 正确;
CD.物块沿斜面方向分力F = mgsinθ , 根据牛顿第二定律有mgsinθ = ma
解得加速度a = gsinθ , 故 C 错误,D 正确。
故选:BD。
AB.物块受重力和支持力作用,合力始终沿斜面向下,与初速度方向垂直,物块做类平抛运动;
CD.根据类平抛运动的规律分析作答。
对物块进行受力分析,分析出初速度方向与合力方向的关系是判断物块做何种运动的关键。类平
抛运动遵循平抛运动的规律,但加速度不是重力加速度。
9.【答案】BD
【解析】解:A 、当绳与水平方向的夹角为 30° 时,根据平行四边形
定则知,物体的速度v ′= vcos30° = v,
根据动能定理得,w mg = mv ′2 ,解得拉力做功w = mg +
mv ′2 ,故 A 错误,B 正确,C 错误.
D 、拉力的大小大于mg ,拉力的功率Fvcos30° = F v > mg v ,故 D 正确.
故选:BD .
将车的速度分解为沿绳方向和垂直绳子方向,沿绳子的方向的分速度等于物体的速度,结合动能
定理求出拉力做功的大小.拉力的大小大于重力,结合功率的公式判断拉力的功率大小.
本题关键将找出车的合运动与分运动,正交分解后得到物体的速度表达式,最后根据功能关系分
析讨论.
10.【答案】AC
【解析】解:AB 、由题意知卫星 1 的周期为 24 , 大于卫星 2 的周期T ′= 14 (24) = 1.7
根据万有引力提供向心力有: = mT
得T =
即半径T越大,周期越大,故卫星 2 的轨道半径小于卫星 1 的轨道半径,故 A 正确,B 错误;
C、根据万有引力提供向心力有: = m
得V =
故卫星 2 的速度大于卫星 1 的速度,故 C 正确;
D 、根据万有引力提供向心力 = ma知,T越大,a越小,卫星 2 的向心加速度大于卫星 1 的向
心加速度,故 D 错误;
故选:AC。
先由题意判断卫星 1 和卫星 2 的周期大小, 由周期关系得出轨道半径关系,进而由半径关系得出 速度大小;根据牛顿第二定律求出向心加速度表达式,利用轨道半径关系判断向心加速度大小。 本题考查万有引力定律及其应用,对于地球同步卫星问题要熟记其特点:定周期、定轨道、定高
度。其中定周期指的是同步卫星周期等于地球自转周期,即 24 。
11.【答案】(1)C;(2)A;(3)2.28;2.27。
【解析】
【分析】
本题考查验证机械能守恒定律的实验,熟悉实验原理和注意事项、误差分析是解题的关键。
(1)根据实验原理分析即可判断;
(2)根据实验注意事项与误差分析逐一分析即可判断;
(3)计算物体重力势能的减少量,根据匀变速直线运动规律推论得出B点时物体的速度,从而计算
出物体动能的增加量。
【解答】
(1)在“验证机械能守恒定律 ”的实验中,我们验证的是减少的重力势能与增加的动能之间的关系,
即比较mg 与 mV2 的关系,在比较时物体质量可以约掉,因此不需要天平,故 C 正确;
(2)A 、质量较小时,阻力相对就较大,导致增加的动能更小于减小重力势能,故 A 错误;
B 、选择点击清晰且第 1 、2 两点间距约为 2mm的纸带,这样才能确保初速度为零,故 B 正确; C、先松开纸带后接通电源,这样初速度不为零,但处理时,却当作初速度为零的,所以会造成
较大的误差,故 C 正确;
D 、实验产生误差的主要原因是重物在下落过程中不可避免地受到阻力的作用,故 D 正确;
本题选不正确的,所以选:A;
(3)物体重力势能的减小量等于其重力所做功,故有:Ep = mg 0B ≈ 2.28J,
在匀变速直线运动中中间时刻的瞬时速度等于该过程中的平均速度,
故有:vB = 2T ( AC) = 0.32 (2).04 (0.1)55 m/s = 2. 125m/s,
所以物体动能的增量为:EKB = mvB (2) ≈ 2.26J。
12.【答案】BCD 保证小球每次平抛的初速度相同,以找出对应的平均落点位置 > = m1x2 =
m1x1 + m2x3
【解析】解:(1)ABC.本实验用v = 代入验证,时间t可以消去,故需要测量小球的水平射程和两
小球的质量,不需要测量时间,即不需要测量抛出点距地面的高度,故 A 错误,BC 正确;
D.为保证小球从斜槽末端段飞出时做平抛运动,应保证斜槽末端水平,故 D 正确;
E.斜槽光滑与否对实验结果不影响,只要保证入射小球均从同一高度释放,保证碰撞前入射小球
的速度相同即可,故 E 错误。
故选:BCD。
(2)保持入射小球从同一位置释放是为了保证小球每次平抛的初速度相同,以找出对应的平均落点
位置;
(3)为了保证小球碰撞为对心碰撞,且碰后不反弹,要求m1 > m2 ,d1 = d2;
(4)碰撞时满足动量守恒有m1 v2 = m1 v1 + m2 v3
两边同时乘以下落时间有m1x2 = m1x1 + m2x3
故答案为:(1)BCD;(2)保证小球每次平抛的初速度相同,以找出对应的平均落点位置;(3) >,
= ;(4)m1x2 = m1x1 + m2x3
(1)(2)(3)根据动量守恒定律和平抛运动规律可得需要验证的关系式,根据关系式判断需要测量物
理量;
(4)小球离开斜槽后做平抛运动,根据题意应用动量守恒定律求出实验需要验证的表达式。
该题考查用“碰撞试验器 ”验证动量守恒定律,该实验中,虽然小球做平抛运动,但是却没有用
到速度和时间,而是用位移x来代替速度v ,成为解决问题的关键;要注意理解该方法的使用。
13.【答案】解:(1)由图像可知,在 0~20s内,游轮的加速度a = 0. 1m/s2 ,在T = 20s时游轮的
速度v = aT = 0. 1 × 20m/s = 2m/s
由牛顿第二定律有F f = Ma
又p = Fv ,解得f = Ma = N 2.5 × 108 × 0. 1N = 5 × 106N
(2)当游轮达到最大速度时,则有F1 = f
又p = F1 vm
解得vm = f (p) = 5 (6)106 (107) m/s = 12m/s
答:(1)游轮航行过程中所受的阻力大小为 5 × 106N;
(2)游轮行驶的最大速度为 12m/s。
【解析】(1)根据速度与时间的关系式求出 20s时游轮的速度,再结合牛顿第二定律和p = Fv求出
游轮航行过程中所受的阻力大小;
(2)根据p = F1 vm 求出游轮的最大速度。
本题考查了机动车的启动问题,解决本题的关键是熟练掌握机动车的两种启动方式。
14.【答案】解:(1)根据机械能守恒定律可得:mg = mv2
解得鸡蛋撞击地面前的速度大小为:v = 2g = 30m/s
以向下为正方向,根据动量定理:I = Δp = 0 mv = 1.5N ·s ,方向向上;
撞击过程中地面对鸡蛋作用的冲量大小为 1.5N ·s;
(2)根据动量定理可得:I = Ft
解得:F = = 500N
根据牛顿第三定律可知,鸡蛋对地面的平均冲击力大小为 500N。
答:(1)鸡蛋与地面撞击前的速度大小为 30m/s,撞击过程中地面对鸡蛋作用的冲量大小为 1.5N ·s;
(2)鸡蛋对地面的平均冲击力的大小为 500N。
【解析】(1)根据机械能守恒定律求解鸡蛋撞击地面前的速度大小,根据动量定理求解地面对鸡蛋
作用的冲量大小;
(2)根据动量定理结合牛顿第三定律求解鸡蛋对地面的平均冲击力大小。
本题主要是考查动量定理,利用动量定理解答问题时,要注意分析运动过程中物体的受力情况,
知道合外力的冲量才等于动量的变化。
15.【答案】解:(1)设滑块到达B点的速度为VB ,由机械能守恒定律,有
MgT = MVB (2)
解得:VB = 2m/s
滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律有
μMg = Ma
滑块对地位移为L ,末速度为VC ,设滑块在传送带上一直加速
由速度位移关系式 2aL = VC (2) VB (2)
解得VC = 3m/s < 4m/s ,可知滑块与传送带未达共速.
运动时间为t = VCVB
产生的热量Q = μMg(V0 t L)
解得Q = 0.3J
由于滑块在传送带上运动,电动机所消耗的电能E = Q +MVC (2) MVB (2)
解得E = 0.8J
(2)滑块从C至F ,由机械能守恒定律,有
MVC (2) = MgR +MVF (2)
解得 VF = 2m/s
在F处,对滑块, 由牛顿第二定律得
Mg + N = M
解得N = 1.2N,
由牛顿第三定律得管上壁受压力大小为 1.2N ,方向竖直向上.
(3)从C到F ,由能量守恒定律得:
MVm (2)in = MgR
解得,传送带的最小速度Vmin = 5m/s
答:
(1)由于滑块在传送带上运动,电动机所消耗的电能是 0.8J;
(2)滑块a 刚到达管顶F点时对管壁的压力大小为 1.2N ,方向竖直向上;
(3)若让滑块通过F点,则传送带的最小速度可以是 5m/S .
【解析】(1)滑块a从A点下滑到B点的过程中,支持力不做功,只有重力做功,由机械能守恒定律 求解a到达B点的速度VB ;研究滑块传送带上的运动过程:滑块在传送带上做匀加速运动,根据牛 顿第二定律求得加速度,假设滑块在传送带上一直加速,由运动学公式求出滑块到达C点的速度,
从而判断滑块有无匀速过程.再根据功能关系求电动机所消耗的电能.
(2)滑块从C至F ,由机械能守恒定律求出到达F点时的速度,由牛顿第二定律求出管道对滑块的弹
力, 由牛顿第三定律即可解得滑块在F点时对管壁的压力.
(3)滑块恰好通过F点时速度为零,由能量守恒定律求传送带的最小速度.
本题按时间顺序进行分析,关键要把握每个过程所遵守的物理规律,运用机械能守恒、牛顿第二
定律、运动学公式结合进行求解.