课件12张PPT。初二数学角平分线的性质 新的折痕与OB 的交点为E .做一做 (1)在一张纸上任意画一个角∠AOB,AOB沿角的两边剪下,将这个角对折,使角的两边重合.(3) 过点C折OA边的垂线,得到新的折痕CD,(4) 将纸打开,E 其中点D是折痕与OA的交点,即垂足. (2)在折痕(即角平分线)上任意取一点C;驶向胜利的彼岸角平分线已知:如图,OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E.
求证:PD=PE.而△OPD≌△OPB的条件由已知易知它满足公理(AAS). 故结论可证.老师期望:你能写出规范的证明过程.分析:要证明PD=PE,只要证明它们所在的△OPD≌△OPB,角平分线上的点到这个角的两边距离相等.你能证明这一结论吗?驶向胜利的彼岸几何的三种语言定理 角平分线上的点到这个角的两边距离相等.
老师提示:这个结论是经常用来证明两条线段相等的根据之一.如图,
∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)
∴PD=PE(角平分线上的点到这个角的两边距离相等).进步的标志′驶向胜利的彼岸已知:如图,PA=PB, PD⊥OA,PE⊥OB,垂足分别是D,E.
求证:点P在∠AOB的平分线上.分析:要证明点P在∠AOB的平分线上,可以先作出过点P的射线OC,然后证明∠1=∠2.老师期望:
你能写出规范的证明过程.驶向胜利的彼岸逆定理逆定理 到角的两边距离相等的点,在这个角的平分线上.如图,
∵PA=PB, PD⊥OA,PE⊥OB,垂足分别是D,E(已知),
∴点P在∠AOB的平分线上.(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).老师提示:这个结论又是经常用来证明点在直线上(或直线经过某一点)的根据之一.
从这个结果出发,你还能联想到什么?驶向胜利的彼岸尺规作图已知:∠AOB,如图.
求作:射线OC,使∠AOC=∠BOC.
作法:用尺规作角的平分线.1.在OAT和OB上分别截取OD,OE,使OD=OE.2.分别以点D和E为圆心,以大于DE/2长为半径作弧,两弧在 ∠AOB内交于点C..3.作射线OC.请你说明OC为什么是∠AOB的平分线,并与同伴进行交流.老师提示:
作角平分线是最基本的尺规作图,这种方法要确实掌握.则射线OC就是∠AOB的平分线.回味无穷定理 角平分线上的点到这个角的两边距离相等.
∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)
∴PD=PE(角平分线上的点到这个角的两边距离相等).
逆定理 到角的两边距离相等的点,在这个角的平分线上.
∵PA=PB, PD⊥OA,PE⊥OB,垂足分别是D,E(已知),
∴点P在∠AOB的平分线上.(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).
用尺规作角的平分线.
.
如习题1.8驶向胜利的彼岸3.已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.
求证:EB=FC. 老师期望:
做完题目后,一定要“悟”到点东西,纳入到自己的认知结构中去. 结束寄语严格性之于数学家,犹如道德之于人.
证明的规范性在于:条理清晰,因果相应,言必有据.这是初学证明者谨记和遵循的原则.梦想成真2.如图,一目标在A区,到期公路,铁路距离相等,离公路与铁路的交叉处500m.在图上标出它的位置(比例尺 1:20 000).