课件13张PPT。三兄弟四中张雄内角三兄弟之争 在一个直角三角形里住着三个内角∠A∠B,∠C,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?” 老二很纳闷。同学们,你们知道其中的道理吗?ABC三角形的三个内角和是多少?把三个角拼在一起试试看?你有什么办法可以验证呢?从刚才拼角的过程你能想出证明的办法吗?思考:怎样用几何语言体现角的移动呢?证法1:过A作EF∥BA,
∴∠B=∠2
(两直线平行,内错角相等)
∠C=∠1
(两直线平行,内错角相等)
又∵∠2+∠1+∠BAC=180°
∴∠B+∠C+∠BAC=180°F21ECBA三角形的内角和等于1800.证法2:延长BC到CD,在△ABC的外部,
以CA为一边,CE为另一边作∠1=∠A,
于是CE∥BA
(内错角相等,两直线平行).
∴∠B=∠2
(两直线平行,同位角相等).
又∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°三角形的内角和等于1800.证法3:延长BC到D,过C作CE∥BA,
∴ ∠A=∠1
(两直线平行,内错角相等)
∠B=∠2
(两直线平行,同位角相等)
又∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°三角形的内角和等于1800.证法4:过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
∴∠B+∠C+∠BAC=180°三角形的内角和等于1800. 在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线。在平面几何里,辅助线通常画成虚线。思路总结 为了证明三个角的和为1800,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.ABC(1)若∠A=43°,∠ B=35 °则∠ C= .
(2)若∠A :∠B:∠C=3:2:4 则∠A = ∠ B= ∠ C= .
2、在同一个三角形中(三兄弟)
(1)最多有 个直角?为什吗?
(2)最多有 个钝角?为什吗?
(3)至少有 个锐角?为什吗?
(4)最大的一个角度数至 少为 .1、若在同一个三角形中的三兄弟有A有一天兄弟C在A的北偏东50°方向,
兄弟B在A的北偏东80°方向,
而兄弟C岛则在B的北偏西40°方向
请问:从兄弟C看A,B的视角
∠ACB是多少度?A有一天兄弟C在A的北偏东50°方向,
兄弟B在A的北偏东80°方向,
而兄弟C岛则在B的北偏西40°方向
请问:从兄弟C看A,B的视角
∠ACB是多少度? 若兄弟A处观测C处时仰角∠CAD=30°,从B处观测C处时仰角∠CBD=45°。 从C处观测A、B两处时视角∠ACB是多少?ABCD解:在△ACD中 ∠CAD =30 ° ∠D =90 °
∴ ∠ACD =180 ° -30 ° -90 °=6 0 °
在△BCD中 ∠CBD = 45 ° ∠D =90 °
∴ ∠BCD = 180 °- 90°-45 °=45 °
∴ ∠ACB = ∠ACD - ∠BCD = 6 0 °- 45 °=15°用运动变化的观点理解和认识数学在△ABC中,如果BC不动,把点A“压”向BC,那么当点A越来越接近BC时, ∠A就越来越大(越来越接近1800),而∠B和 ∠C,越来越小(越来越接近00).由此你能想到什么?如果BC不动,把点A“拉离”BC,那么当A越来越远离BC时,∠A就越来越小(越来越接近00),而∠B和∠C则越来越大,它们的和越来越接近1800, 当把点A拉到无穷远时,便有AB∥AC,∠B和∠C成为同旁内角,它们的和等于1800.由此你能想到什么?