(共21张PPT)
25.2 用列举法求概率
第二十五章 概率初步
第1课时 运用直接列举或列表法求概率
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.知道什么时候采用“直接列举法”和“列表法” .
2.会正确“列表”表示出所有可能出现的结果.(难点)
3.知道如何利用“列表法”求随机事件的概率.(重点)
我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这是一个游戏双方获胜概率大小的问题.
老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?
我们一起来做游戏
用直接列举法求概率
一
同时掷两枚硬币,试求下列事件的概率:
(1)两枚两面一样;
(2)一枚硬币正面朝上,一枚硬币反面朝上;
①
②
探索交流
“掷两枚硬币”所有结果如下:
正正
正反
反正
反反
①
②
①
②
①
②
①
②
解:
(1)两枚硬币两面一样包括两面都是正面,两面都是反面,共两种情形;所以学生赢的概率是
(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正,正反两种情形;所以老师赢的概率是
∵P(学生赢)=P(老师赢).
∴这个游戏是公平的.
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
注意
直接列举法比较适合用于最多涉及两个试验因素或分两步进行的试验,且事件总结果的种数比较少的等可能性事件.
想一想 “同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?
开始
第一掷
第二掷
所有可能出现的结果
(正、正)
(正、反)
(反、正)
(反、反)
发现:
一样.
观察与思考
随机事件“同时”与“先后”的关系:“两个相同的随机事件同时发生”与 “一个随机事件先后两次发生”的结果是一样的.
归纳
列表法求概率
二
问题1 利用直接列举法可以比较快地求出简单事件发生的概率,对于列举复杂事件的发生情况还有什么更好的方法呢?
列表法
问题2 怎样列表格?
一个因素所包含的可能情况
另一个因素所包含的可能情况
两个因素所组合的所有可能情况,即n
列表法中表格构造特点:
典例精析
例1 同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同;
(2)两个骰子点数的和是9;
(3)至少有一个骰子的点数为2.
合作探究
分析 当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.
把两个骰子分别标记为第1个和第2个,列表如下:
1 2 3 4 5 6
1
2
3
4
5
6
第二个
第一个
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
注意有序数对要统一顺序
解:由列表得,同时掷两枚骰子,可能出现的结果有36个,它们出现的可能性相等.
(1)满足两枚骰子的点数相同(记为事件A)的结果有6个,则P(A)= ;
(2)满足两枚骰子的点数之和是9(记为事件B)的结果有4个,则P(B)= ;
(3)满足至少有一枚骰子的点数为2(记为事件C)的结果有11个,则P(C)= .
列表法对于列举涉及两个因素或分两步进行的试验结果是一种有效
的方法.
提示
我们发现:
与前面掷硬币问题一样,“同时掷两个质地相同的骰子”与“把一个骰子掷两次”,所得到的结果没有变化. 所以,当试验涉及两个因素时,可以“分步”对问题进行分析.
列表法求概率应注意的问题
方法归纳
确保试验中每种结果出现的可能性大小相等.
第一步:列表格;
第二步:在所有可能情况n中,再找到满足条件的事件的个数m;
第三步:代入概率公式 计算事件的概率.
列表法求概率的基本步骤
1.小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是( )
2.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是( )
C
D
A. B. C. D.
A. B. C. D.
3.如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌.
(1)摸出两张牌的数字之和为4的概念为多少?
(2)摸出为两张牌的数字相等的概率为多少?
3
2
(2,3)
(3,3)
(3,2)
(3,1)
(2,2)
(2,1)
(1,3)
(1,2)
(1,1)
1
3
2
1
第二张牌
的牌面数字
第一张牌的
牌面数字
解:(1)P(数字之和为4)= .
(2)P(数字相等)=
列举法
关键
常用
方法
直接列举法
列表法
画树状图法
(下节课学习)
适用对象
两个试验因素或分两步进行的试验.
基本步骤
列表;
确定m、n值
代入概率公式计算.
在于正确列举出试验结果的各种可能性.
确保试验中每种结果出现的可能性大小相等.
前提条件