中小学教育资源及组卷应用平台
真题卷05 三角函数与解三角形(单选题、多选题)
一、单选题
1.(2022·全国·统考高考真题)记函数的最小正周期为T.若,且的图象关于点中心对称,则( )
A.1 B. C. D.3
【答案】A
【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.
【详解】由函数的最小正周期T满足,得,解得,
又因为函数图象关于点对称,所以,且,
所以,所以,,
所以.
故选:A
2.(2022·全国·统考高考真题)函数在区间的图象大致为( )
A. B.
C. D.
【答案】A
【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.
【详解】令,
则,
所以为奇函数,排除BD;
又当时,,所以,排除C.
故选:A.
3.(2022·全国·统考高考真题)若,则( )
A. B.
C. D.
【答案】C
【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.
【详解】[方法一]:直接法
由已知得:,
即:,
即:
所以
故选:C
[方法二]:特殊值排除法
解法一:设β=0则sinα +cosα =0,取,排除A, B;
再取α=0则sinβ +cosβ= 2sinβ,取β,排除D;选C.
[方法三]:三角恒等变换
所以
即
故选:C.
4.(2022·全国·统考高考真题)设函数在区间恰有三个极值点、两个零点,则的取值范围是( )
A. B. C. D.
【答案】C
【分析】由的取值范围得到的取值范围,再结合正弦函数的性质得到不等式组,解得即可.
【详解】解:依题意可得,因为,所以,
要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:
则,解得,即.
故选:C.
5.(2021·全国·统考高考真题)若,则( )
A. B. C. D.
【答案】C
【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果.
【详解】将式子进行齐次化处理得:
.
故选:C.
【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.
6.(2021·全国·高考真题)若,则( )
A. B. C. D.
【答案】A
【分析】由二倍角公式可得,再结合已知可求得,利用同角三角函数的基本关系即可求解.
【详解】
,
,,,解得,
,.
故选:A.
【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出.
7.(2022·全国·统考高考真题)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是( )
A. B. C. D.
【答案】C
【分析】先由平移求出曲线的解析式,再结合对称性得,即可求出的最小值.
【详解】由题意知:曲线为,又关于轴对称,则,
解得,又,故当时,的最小值为.
故选:C.
8.(2021·全国·统考高考真题)下列区间中,函数单调递增的区间是( )
A. B. C. D.
【答案】A
【分析】解不等式,利用赋值法可得出结论.
【详解】因为函数的单调递增区间为,
对于函数,由,
解得,
取,可得函数的一个单调递增区间为,
则,,A选项满足条件,B不满足条件;
取,可得函数的一个单调递增区间为,
且,,CD选项均不满足条件.
故选:A.
【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数.
9.(2021·全国·统考高考真题)把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )
A. B.
C. D.
【答案】B
【分析】解法一:从函数的图象出发,按照已知的变换顺序,逐次变换,得到,即得,再利用换元思想求得的解析表达式;
解法二:从函数出发,逆向实施各步变换,利用平移伸缩变换法则得到的解析表达式.
【详解】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到的图象,再把所得曲线向右平移个单位长度,应当得到的图象,
根据已知得到了函数的图象,所以,
令,则,
所以,所以;
解法二:由已知的函数逆向变换,
第一步:向左平移个单位长度,得到的图象,
第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,
即为的图象,所以.
故选:B.
10.(2022·全国·统考高考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,( )
A. B. C. D.
【答案】B
【分析】连接,分别求出,再根据题中公式即可得出答案.
【详解】解:如图,连接,
因为是的中点,
所以,
又,所以三点共线,
即,
又,
所以,
则,故,
所以.
故选:B.
11.(2021·全国·统考高考真题)已知命题﹔命题﹐,则下列命题中为真命题的是( )
A. B. C. D.
【答案】A
【分析】由正弦函数的有界性确定命题的真假性,由指数函数的知识确定命题的真假性,由此确定正确选项.
【详解】由于,所以命题为真命题;
由于在上为增函数,,所以,所以命题为真命题;
所以为真命题,、、为假命题.
故选:A.
12.(2022·北京·统考高考真题)在中,.P为所在平面内的动点,且,则的取值范围是( )
A. B. C. D.
【答案】D
【分析】依题意建立平面直角坐标系,设,表示出,,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;
【详解】解:依题意如图建立平面直角坐标系,则,,,
因为,所以在以为圆心,为半径的圆上运动,
设,,
所以,,
所以
,其中,,
因为,所以,即;
故选:D
13.(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )
A. B. C. D.
【答案】A
【分析】由函数图像的特征结合函数的性质逐项排除即可得解.
【详解】设,则,故排除B;
设,当时,,
所以,故排除C;
设,则,故排除D.
故选:A.
14.(2020·全国·统考高考真题)设函数在的图像大致如下图,则f(x)的最小正周期为( )
A. B.
C. D.
【答案】C
【分析】由图可得:函数图象过点,即可得到,结合是函数图象与轴负半轴的第一个交点即可得到,即可求得,再利用三角函数周期公式即可得解.
【详解】由图可得:函数图象过点,
将它代入函数可得:
又是函数图象与轴负半轴的第一个交点,
所以,解得:
所以函数的最小正周期为
故选:C
【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.
15.(2021·全国·统考高考真题)( )
A. B. C. D.
【答案】D
【分析】由题意结合诱导公式可得,再由二倍角公式即可得解.
【详解】由题意,
.
故选:D.
16.(2021·全国·统考高考真题)函数的最小正周期和最大值分别是( )
A.和 B.和2 C.和 D.和2
【答案】C
【分析】利用辅助角公式化简,结合三角函数周期性和值域求得函数的最小正周期和最大值.
【详解】由题,,所以的最小正周期为,最大值为.
故选:C.
17.(2021·全国·统考高考真题)下列函数中最小值为4的是( )
A. B.
C. D.
【答案】C
【分析】根据二次函数的性质可判断选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出不符合题意,符合题意.
【详解】对于A,,当且仅当时取等号,所以其最小值为,A不符合题意;
对于B,因为,,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;
对于C,因为函数定义域为,而,,当且仅当,即时取等号,所以其最小值为,C符合题意;
对于D,,函数定义域为,而且,如当,,D不符合题意.
故选:C.
【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.
18.(2022·浙江·统考高考真题)为了得到函数的图象,只要把函数图象上所有的点( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
【答案】D
【分析】根据三角函数图象的变换法则即可求出.
【详解】因为,所以把函数图象上的所有点向右平移个单位长度即可得到函数的图象.
故选:D.
19.(2022·浙江·统考高考真题)设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
【答案】A
【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.
【详解】因为可得:
当时,,充分性成立;
当时,,必要性不成立;
所以当,是的充分不必要条件.
故选:A.
20.(2021·全国·高考真题)在中,已知,,,则( )
A.1 B. C. D.3
【答案】D
【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.
【详解】设,
结合余弦定理:可得:,
即:,解得:(舍去),
故.
故选:D.
【点睛】利用余弦定理及其推论解三角形的类型:
(1)已知三角形的三条边求三个角;
(2)已知三角形的两边及其夹角求第三边及两角;
(3)已知三角形的两边与其中一边的对角,解三角形.
21.(2022·北京·统考高考真题)已知函数,则( )
A.在上单调递减 B.在上单调递增
C.在上单调递减 D.在上单调递增
【答案】C
【分析】化简得出,利用余弦型函数的单调性逐项判断可得出合适的选项.
【详解】因为.
对于A选项,当时,,则在上单调递增,A错;
对于B选项,当时,,则在上不单调,B错;
对于C选项,当时,,则在上单调递减,C对;
对于D选项,当时,,则在上不单调,D错.
故选:C.
22.(2021·全国·统考高考真题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影满足,.由C点测得B点的仰角为,与的差为100;由B点测得A点的仰角为,则A,C两点到水平面的高度差约为()( )
A.346 B.373 C.446 D.473
【答案】B
【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得,进而得到答案.
【详解】
过作,过作,
故,
由题,易知为等腰直角三角形,所以.
所以.
因为,所以
在中,由正弦定理得:
,
而,
所以
所以.
故选:B.
【点睛】本题关键点在于如何正确将的长度通过作辅助线的方式转化为.
23.(2020·全国·统考高考真题)已知,且,则( )
A. B.
C. D.
【答案】A
【分析】用二倍角的余弦公式,将已知方程转化为关于的一元二次方程,求解得出,再用同角间的三角函数关系,即可得出结论.
【详解】,得,
即,解得或(舍去),
又.
故选:A.
【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.
24.(2021·全国·统考高考真题)魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )
A.表高 B.表高
C.表距 D.表距
【答案】A
【分析】利用平面相似的有关知识以及合分比性质即可解出.
【详解】如图所示:
由平面相似可知,,而 ,所以
,而 ,
即= .
故选:A.
【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.
25.(2022·天津·统考高考真题)已知,关于该函数有下列四个说法:
①的最小正周期为;
②在上单调递增;
③当时,的取值范围为;
④的图象可由的图象向左平移个单位长度得到.
以上四个说法中,正确的个数为( )
A. B. C. D.
【答案】A
【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假.
【详解】因为,所以的最小正周期为,①不正确;
令,而在上递增,所以在上单调递增,②正确;因为,,所以,③不正确;
由于,所以的图象可由的图象向右平移个单位长度得到,④不正确.
故选:A.
26.(2023·全国·统考高考真题)已知,则( ).
A. B. C. D.
【答案】B
【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式计算作答.
【详解】因为,而,因此,
则,
所以.
故选:B
【点睛】方法点睛:三角函数求值的类型及方法
(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.
(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.
(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.
27.(2019·全国·高考真题)函数f(x)=在[—π,π]的图像大致为
A. B.
C. D.
【答案】D
【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.
【详解】由,得是奇函数,其图象关于原点对称.又.故选D.
【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.
28.(2019·全国·高考真题)已知 ∈(0,),2sin2α=cos2α+1,则sinα=
A. B.
C. D.
【答案】B
【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案.
【详解】,.
,又,,又,,故选B.
【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.
29.(2020·全国·统考高考真题)在△ABC中,cosC=,AC=4,BC=3,则cosB=( )
A. B. C. D.
【答案】A
【分析】根据已知条件结合余弦定理求得,再根据,即可求得答案.
【详解】在中,,,
根据余弦定理:
可得 ,即
由
故.
故选:A.
【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.
30.(2020·全国·统考高考真题)已知,则( )
A. B. C. D.
【答案】B
【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.
【详解】由题意可得:,
则:,,
从而有:,
即.
故选:B.
【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.
31.(2020·全国·统考高考真题)已知2tanθ–tan(θ+)=7,则tanθ=( )
A.–2 B.–1 C.1 D.2
【答案】D
【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.
【详解】,,
令,则,整理得,解得,即.
故选:D.
【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.
32.(2023·全国·统考高考真题)过点与圆相切的两条直线的夹角为,则( )
A.1 B. C. D.
【答案】B
【分析】方法一:根据切线的性质求切线长,结合倍角公式运算求解;方法二:根据切线的性质求切线长,结合余弦定理运算求解;方法三:根据切线结合点到直线的距离公式可得,利用韦达定理结合夹角公式运算求解.
【详解】方法一:因为,即,可得圆心,半径,
过点作圆C的切线,切点为,
因为,则,
可得,
则,
,
即为钝角,
所以;
法二:圆的圆心,半径,
过点作圆C的切线,切点为,连接,
可得,则,
因为
且,则,
即,解得,
即为钝角,则,
且为锐角,所以;
方法三:圆的圆心,半径,
若切线斜率不存在,则切线方程为,则圆心到切点的距离,不合题意;
若切线斜率存在,设切线方程为,即,
则,整理得,且
设两切线斜率分别为,则,
可得,
所以,即,可得,
则,
且,则,解得.
故选:B.
33.(2020·全国·统考高考真题)若α为第四象限角,则( )
A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<0
【答案】D
【分析】由题意结合二倍角公式确定所给的选项是否正确即可.
【详解】方法一:由α为第四象限角,可得,
所以
此时的终边落在第三、四象限及轴的非正半轴上,所以
故选:D.
方法二:当时,,选项B错误;
当时,,选项A错误;
由在第四象限可得:,则,选项C错误,选项D正确;
故选:D.
【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.
34.(2018·全国·高考真题)的内角的对边分别为,,,若的面积为,则
A. B. C. D.
【答案】C
【详解】分析:利用面积公式和余弦定理进行计算可得.
详解:由题可知
所以
由余弦定理
所以
故选C.
点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理.
35.(2023·全国·统考高考真题)已知函数在区间单调递增,直线和为函数的图像的两条相邻对称轴,则( )
A. B. C. D.
【答案】D
【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入即可得到答案.
【详解】因为在区间单调递增,
所以,且,则,,
当时,取得最小值,则,,
则,,不妨取,则,
则,
故选:D.
36.(2019·全国·高考真题)关于函数有下述四个结论:
①f(x)是偶函数 ②f(x)在区间(,)单调递增
③f(x)在有4个零点 ④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④ B.②④ C.①④ D.①③
【答案】C
【分析】化简函数,研究它的性质从而得出正确答案.
【详解】为偶函数,故①正确.当时,,它在区间单调递减,故②错误.当时,,它有两个零点:;当时,,它有一个零点:,故在有个零点:,故③错误.当时,;当时,,又为偶函数,的最大值为,故④正确.综上所述,①④ 正确,故选C.
【点睛】画出函数的图象,由图象可得①④正确,故选C.
37.(2019·全国·高考真题)△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=
A.6 B.5 C.4 D.3
【答案】A
【分析】利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.
【详解】详解:由已知及正弦定理可得,由余弦定理推论可得
,故选A.
【点睛】本题考查正弦定理及余弦定理推论的应用.
38.(2018·全国·高考真题)在中,,BC=1,AC=5,则AB=
A. B. C. D.
【答案】A
【详解】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.
详解:因为
所以,选A.
点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.
39.(2019·全国·高考真题)下列函数中,以为周期且在区间(,)单调递增的是
A.f(x)=│cos 2x│ B.f(x)=│sin 2x│
C.f(x)=cos│x│ D.f(x)= sin│x│
【答案】A
【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.
【详解】因为图象如下图,知其不是周期函数,排除D;因为,周期为,排除C,作出图象,由图象知,其周期为,在区间单调递增,A正确;作出的图象,由图象知,其周期为,在区间单调递减,排除B,故选A.
【点睛】
利用二级结论:①函数的周期是函数周期的一半;②不是周期函数;
40.(2018·全国·高考真题)若在是减函数,则的最大值是
A. B. C. D.
【答案】A
【详解】因为,
所以由得
因此,从而的最大值为,故选:A.
41.(2018·全国·高考真题)若,则
A. B. C. D.
【答案】B
【详解】分析:由公式可得结果.
详解:
故选B.
点睛:本题主要考查二倍角公式,属于基础题.
42.(2023·全国·统考高考真题)已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )
A. B. C. D.
【答案】C
【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.
【详解】取的中点,连接,因为是等腰直角三角形,且为斜边,则有,
又是等边三角形,则,从而为二面角的平面角,即,
显然平面,于是平面,又平面,
因此平面平面,显然平面平面,
直线平面,则直线在平面内的射影为直线,
从而为直线与平面所成的角,令,则,在中,由余弦定理得:
,
由正弦定理得,即,
显然是锐角,,
所以直线与平面所成的角的正切为.
故选:C
43.(2020·全国·统考高考真题)在△ABC中,cosC=,AC=4,BC=3,则tanB=( )
A. B.2 C.4 D.8
【答案】C
【分析】先根据余弦定理求,再根据余弦定理求,最后根据同角三角函数关系求
【详解】设
故选:C
【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.
44.(2019·全国·统考高考真题)设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:
①在()有且仅有3个极大值点
②在()有且仅有2个极小值点
③在()单调递增
④的取值范围是[)
其中所有正确结论的编号是
A.①④ B.②③ C.①②③ D.①③④
【答案】D
【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得,结合正弦函数的图像分析得出答案.
【详解】当时,,
∵f(x)在有且仅有5个零点,
∴,
∴,故④正确,
由,知时,
令时取得极大值,①正确;
极小值点不确定,可能是2个也可能是3个,②不正确;
因此由选项可知只需判断③是否正确即可得到答案,
当时,,
若f(x)在单调递增,
则 ,即 ,
∵,故③正确.
故选D.
【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题.
45.(2023·全国·统考高考真题)设甲:,乙:,则( )
A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件
【答案】B
【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解.
【详解】当时,例如但,
即推不出;
当时,,
即能推出.
综上可知,甲是乙的必要不充分条件.
故选:B
46.(2023·全国·统考高考真题)已知向量满足,且,则( )
A. B. C. D.
【答案】D
【分析】作出图形,根据几何意义求解.
【详解】因为,所以,
即,即,所以.
如图,设,
由题知,是等腰直角三角形,
AB边上的高,
所以,
,
.
故选:D.
47.(2018·全国·高考真题)已知函数,则
A.的最小正周期为,最大值为
B.的最小正周期为,最大值为
C.的最小正周期为,最大值为
D.的最小正周期为,最大值为
【答案】B
【分析】首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.
【详解】根据题意有,
所以函数的最小正周期为,
且最大值为,故选B.
【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.
48.(2021·浙江·统考高考真题)已知是互不相同的锐角,则在三个值中,大于的个数的最大值是( )
A.0 B.1 C.2 D.3
【答案】C
【分析】利用基本不等式或排序不等式得,从而可判断三个代数式不可能均大于,再结合特例可得三式中大于的个数的最大值.
【详解】法1:由基本不等式有,
同理,,
故,
故不可能均大于.
取,,,
则,
故三式中大于的个数的最大值为2,
故选:C.
法2:不妨设,则,
由排列不等式可得:
,
而,
故不可能均大于.
取,,,
则,
故三式中大于的个数的最大值为2,
故选:C.
【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向.
49.(2023·全国·统考高考真题)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
A. B. C. D.
【答案】C
【分析】法一:利用全等三角形的证明方法依次证得,,从而得到,再在中利用余弦定理求得,从而求得,由此在中利用余弦定理与三角形面积公式即可得解;
法二:先在中利用余弦定理求得,,从而求得,再利用空间向量的数量积运算与余弦定理得到关于的方程组,从而求得,由此在中利用余弦定理与三角形面积公式即可得解.
【详解】法一:
连结交于,连结,则为的中点,如图,
因为底面为正方形,,所以,则,
又,,所以,则,
又,,所以,则,
在中,,
则由余弦定理可得,
故,则,
故在中,,
所以,
又,所以,
所以的面积为.
法二:
连结交于,连结,则为的中点,如图,
因为底面为正方形,,所以,
在中,,
则由余弦定理可得,故,
所以,则,
不妨记,
因为,所以,
即,
则,整理得①,
又在中,,即,则②,
两式相加得,故,
故在中,,
所以,
又,所以,
所以的面积为.
故选:C.
50.(2022秋·吉林长春·高三长春市第二中学校考阶段练习)若,则( )
A. B. C. D.
【答案】B
【分析】结合已知条件,利用sinα+cosα与2sinαcosα的关系即可求值.
【详解】
.
故选:B.
51.(2019·全国·高考真题)tan255°=
A.-2- B.-2+ C.2- D.2+
【答案】D
【分析】本题首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查.
【详解】详解:=
【点睛】三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.
52.(2023·全国·统考高考真题)在中,内角的对边分别是,若,且,则( )
A. B. C. D.
【答案】C
【分析】首先利用正弦定理边化角,然后结合诱导公式和两角和的正弦公式求得的值,最后利用三角形内角和定理可得的值.
【详解】由题意结合正弦定理可得,
即,
整理可得,由于,故,
据此可得,
则.
故选:C.
53.(2019·全国·高考真题)若x1=,x2=是函数f(x)=(>0)两个相邻的极值点,则=
A.2 B.
C.1 D.
【答案】A
【分析】从极值点可得函数的周期,结合周期公式可得.
【详解】由题意知,的周期,得.故选A.
【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.
54.(2023·全国·统考高考真题)正方形的边长是2,是的中点,则( )
A. B.3 C. D.5
【答案】B
【分析】方法一:以为基底向量表示,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求,进而根据数量积的定义运算求解.
【详解】方法一:以为基底向量,可知,
则,
所以;
方法二:如图,以为坐标原点建立平面直角坐标系,
则,可得,
所以;
方法三:由题意可得:,
在中,由余弦定理可得,
所以.
故选:B.
55.(2015·全国·高考真题)函数=的部分图像如图所示,则的单调递减区间为
A. B.
C. D.
【答案】D
【详解】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.
考点:三角函数图像与性质
56.(2013·陕西·高考真题)设在中,角所对的边分别为, 若, 则的形状为 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定
【答案】B
【分析】利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.
【详解】因为,
所以由正弦定理可得,
,
所以,所以是直角三角形.
【点睛】本题主要考查正弦定理的应用,属于基础题. 弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.
57.(2023·全国·统考高考真题)已知实数满足,则的最大值是( )
A. B.4 C. D.7
【答案】C
【分析】法一:令,利用判别式法即可;法二:通过整理得,利用三角换元法即可,法三:整理出圆的方程,设,利用圆心到直线的距离小于等于半径即可.
【详解】法一:令,则,
代入原式化简得,
因为存在实数,则,即,
化简得,解得,
故 的最大值是,
法二:,整理得,
令,,其中,
则,
,所以,则,即时,取得最大值,
法三:由可得,
设,则圆心到直线的距离,
解得
故选:C.
58.(2017·全国·高考真题)已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
【答案】D
【详解】把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,
故选D.
点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言. 函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.
59.(2017·全国·高考真题)△ABC的内角A、B、C的对边分别为a、b、c.已知,a=2,c=,则C=
A. B. C. D.
【答案】B
【详解】试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可
详解:sinB=sin(A+C)=sinAcosC+cosAsinC,
∵sinB+sinA(sinC﹣cosC)=0,
∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,
∴cosAsinC+sinAsinC=0,
∵sinC≠0,
∴cosA=﹣sinA,
∴tanA=﹣1,
∵<A<π,
∴A= ,
由正弦定理可得,
∵a=2,c=,
∴sinC== ,
∵a>c,
∴C=,
故选B.
点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.
60.(2018·天津·高考真题)将函数的图象向右平移个单位长度,所得图象对应的函数
A.在区间上单调递增 B.在区间上单调递减
C.在区间上单调递增 D.在区间上单调递减
【答案】A
【分析】由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.
【详解】由函数图象平移变换的性质可知:
将的图象向右平移个单位长度之后的解析式为:
.
则函数的单调递增区间满足:,
即,
令可得一个单调递增区间为:.
函数的单调递减区间满足:,
即,
令可得一个单调递减区间为:,本题选择A选项.
【点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.
61.(2019·天津·高考真题)已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则
A. B. C. D.
【答案】C
【解析】只需根据函数性质逐步得出值即可.
【详解】因为为奇函数,∴;
又
,,又
∴,
故选C.
【点睛】本题考查函数的性质和函数的求值问题,解题关键是求出函数.
62.(2023·天津·统考高考真题)已知函数的一条对称轴为直线,一个周期为4,则的解析式可能为( )
A. B.
C. D.
【答案】B
【分析】由题意分别考查函数的最小正周期和函数在处的函数值,排除不合题意的选项即可确定满足题意的函数解析式.
【详解】由函数的解析式考查函数的最小周期性:
A选项中,B选项中,
C选项中,D选项中,
排除选项CD,
对于A选项,当时,函数值,故是函数的一个对称中心,排除选项A,
对于B选项,当时,函数值,故是函数的一条对称轴,
故选:B.
63.(2017·全国·高考真题)已知,则.
A. B. C. D.
【答案】A
【详解】.
所以选A.
【点睛】本题考查了二倍角及同角正余弦的差与积的关系,属于基础题.
64.(2018·全国·高考真题)函数的最小正周期为
A. B. C. D.
【答案】C
【详解】分析:将函数进行化简即可
详解:由已知得
的最小正周期
故选C.
点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题
65.(2020·山东·统考高考真题)在中,内角,,的对边分别是,,,若,且 ,则等于( )
A.3 B. C.3或 D.-3或
【答案】A
【分析】利用余弦定理求出,并进一步判断,由正弦定理可得,最后利用两角和的正切公式,即可得到答案;
【详解】,,
,
,
,,
,
,
故选:A.
66.(2020·北京·统考高考真题)2020年3月14日是全球首个国际圆周率日( Day).历史上,求圆周率的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值.按照阿尔·卡西的方法,的近似值的表达式是( ).
A. B.
C. D.
【答案】A
【分析】计算出单位圆内接正边形和外切正边形的周长,利用它们的算术平均数作为的近似值可得出结果.
【详解】单位圆内接正边形的每条边所对应的圆心角为,每条边长为 ,
所以,单位圆的内接正边形的周长为,
单位圆的外切正边形的每条边长为,其周长为,
,
则.
故选:A.
【点睛】本题考查圆周率的近似值的计算,根据题意计算出单位圆内接正边形和外切正边形的周长是解答的关键,考查计算能力,属于中等题.
67.(2017·全国·高考真题)设函数f(x)=cos(x+),则下列结论错误的是
A.f(x)的一个周期为 2π B.y=f(x)的图像关于直线x=对称
C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减
【答案】D
【详解】f(x)的最小正周期为2π,易知A正确;
f=cos=cos3π=-1,为f(x)的最小值,故B正确;
∵f(x+π)=cos=-cos,∴f=-cos=-cos=0,故C正确;
由于f=cos=cosπ=-1,为f(x)的最小值,故f(x)在上不单调,故D错误.
故选D.
68.(2017·全国·高考真题)函数f(x)=sin(x+)+cos(x )的最大值为
A. B.1 C. D.
【答案】A
【详解】由诱导公式可得,
则,
函数的最大值为.
所以选A.
【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式,再借助三角函数的图像研究性质,解题时注意观察角、函数名、结构等特征.
69.(2009·全国·高考真题)若将函数的图像向右平移个单位长度后,与函数的图像重合,则的最小值为
A. B. C. D.
【答案】D
【详解】函数的图像向右平移个单位得,所以
,所以得最小值为.
70.(2017·全国·高考真题)函数y=1+x+的部分图象大致为( )
A.B. C. D.
【答案】D
【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.
【详解】当x=1时,y=1+1+sin1=2+sin1>2,排除A、C;
当x→+∞时,y→+∞,排除B.
故选:D.
【点睛】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.
二、多选题
71.(2022·全国·统考高考真题)已知函数的图像关于点中心对称,则( )
A.在区间单调递减
B.在区间有两个极值点
C.直线是曲线的对称轴
D.直线是曲线的切线
【答案】AD
【分析】根据三角函数的性质逐个判断各选项,即可解出.
【详解】由题意得:,所以,,
即,
又,所以时,,故.
对A,当时,,由正弦函数图象知在上是单调递减;
对B,当时,,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;
对C,当时,,,直线不是对称轴;
对D,由得:,
解得或,
从而得:或,
所以函数在点处的切线斜率为,
切线方程为:即.
故选:AD.
72.(2022·全国·统考高考真题)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A. B. C. D.
【答案】AC
【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.
【详解】[方法一]:几何法,双曲线定义的应用
情况一
M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,
所以,因为,所以在双曲线的左支,
,, ,设,由即,则,
选A
情况二
若M、N在双曲线的两支,因为,所以在双曲线的右支,
所以,, ,设,
由,即,则,
所以,即,
所以双曲线的离心率
选C
[方法二]:答案回代法
特值双曲线
,
过且与圆相切的一条直线为,
两交点都在左支,,
,
则,
特值双曲线,
过且与圆相切的一条直线为,
两交点在左右两支,在右支,,
,
则,
[方法三]:
依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
若分别在左右支,
因为,且,所以在双曲线的右支,
又,,,
设,,
在中,有,
故即,
所以,
而,,,故,
代入整理得到,即,
所以双曲线的离心率
若均在左支上,
同理有,其中为钝角,故,
故即,
代入,,,整理得到:,
故,故,
故选:AC.
73.(2020·海南·高考真题)下图是函数y= sin(ωx+φ)的部分图像,则sin(ωx+φ)= ( )
A. B. C. D.
【答案】BC
【分析】首先利用周期确定的值,然后确定的值即可确定函数的解析式,最后利用诱导公式可得正确结果.
【详解】由函数图像可知:,则,所以不选A,
不妨令,
当时,,
解得:,
即函数的解析式为:
.
而
故选:BC.
【点睛】已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:
(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.
74.(2021·全国·统考高考真题)已知为坐标原点,点,,,,则( )
A. B.
C. D.
【答案】AC
【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.
【详解】A:,,所以,,故,正确;
B:,,所以,同理,故不一定相等,错误;
C:由题意得:,,正确;
D:由题意得:,
,故一般来说故错误;
故选:AC
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
真题卷05 三角函数与解三角形(单选题、多选题)
一、单选题
1.(2022·全国·统考高考真题)记函数的最小正周期为T.若,且的图象关于点中心对称,则( )
A.1 B. C. D.3
2.(2022·全国·统考高考真题)函数在区间的图象大致为( )
A. B.
C. D.
3.(2022·全国·统考高考真题)若,则( )
A. B.
C. D.
4.(2022·全国·统考高考真题)设函数在区间恰有三个极值点、两个零点,则的取值范围是( )
A. B. C. D.
5.(2021·全国·统考高考真题)若,则( )
A. B. C. D.
6.(2021·全国·高考真题)若,则( )
A. B. C. D.
7.(2022·全国·统考高考真题)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是( )
A. B. C. D.
8.(2021·全国·统考高考真题)下列区间中,函数单调递增的区间是( )
A. B. C. D.
9.(2021·全国·统考高考真题)把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )
A. B.
C. D.
10.(2022·全国·统考高考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,( )
A. B. C. D.
11.(2021·全国·统考高考真题)已知命题﹔命题﹐,则下列命题中为真命题的是( )
A. B. C. D.
12.(2022·北京·统考高考真题)在中,.P为所在平面内的动点,且,则的取值范围是( )
A. B. C. D.
13.(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )
A. B. C. D.
14.(2020·全国·统考高考真题)设函数在的图像大致如下图,则f(x)的最小正周期为( )
A. B.
C. D.
15.(2021·全国·统考高考真题)( )
A. B. C. D.
16.(2021·全国·统考高考真题)函数的最小正周期和最大值分别是( )
A.和 B.和2 C.和 D.和2
17.(2021·全国·统考高考真题)下列函数中最小值为4的是( )
A. B.
C. D.
18.(2022·浙江·统考高考真题)为了得到函数的图象,只要把函数图象上所有的点( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
19.(2022·浙江·统考高考真题)设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
20.(2021·全国·高考真题)在中,已知,,,则( )
A.1 B. C. D.3
21.(2022·北京·统考高考真题)已知函数,则( )
A.在上单调递减 B.在上单调递增
C.在上单调递减 D.在上单调递增
22.(2021·全国·统考高考真题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影满足,.由C点测得B点的仰角为,与的差为100;由B点测得A点的仰角为,则A,C两点到水平面的高度差约为()( )
A.346 B.373 C.446 D.473
23.(2020·全国·统考高考真题)已知,且,则( )
A. B.
C. D.
24.(2021·全国·统考高考真题)魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )
A.表高 B.表高
C.表距 D.表距
25.(2022·天津·统考高考真题)已知,关于该函数有下列四个说法:
①的最小正周期为;
②在上单调递增;
③当时,的取值范围为;
④的图象可由的图象向左平移个单位长度得到.
以上四个说法中,正确的个数为( )
A. B. C. D.
26.(2023·全国·统考高考真题)已知,则( ).
A. B. C. D.
27.(2019·全国·高考真题)函数f(x)=在[—π,π]的图像大致为
A. B.
C. D.
28.(2019·全国·高考真题)已知 ∈(0,),2sin2α=cos2α+1,则sinα=
A. B.
C. D.
29.(2020·全国·统考高考真题)在△ABC中,cosC=,AC=4,BC=3,则cosB=( )
A. B. C. D.
30.(2020·全国·统考高考真题)已知,则( )
A. B. C. D.
31.(2020·全国·统考高考真题)已知2tanθ–tan(θ+)=7,则tanθ=( )
A.–2 B.–1 C.1 D.2
32.(2023·全国·统考高考真题)过点与圆相切的两条直线的夹角为,则( )
A.1 B. C. D.
33.(2020·全国·统考高考真题)若α为第四象限角,则( )
A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<0
34.(2018·全国·高考真题)的内角的对边分别为,,,若的面积为,则
A. B. C. D.
35.(2023·全国·统考高考真题)已知函数在区间单调递增,直线和为函数的图像的两条相邻对称轴,则( )
A. B. C. D.
36.(2019·全国·高考真题)关于函数有下述四个结论:
①f(x)是偶函数 ②f(x)在区间(,)单调递增
③f(x)在有4个零点 ④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④ B.②④ C.①④ D.①③
37.(2019·全国·高考真题)△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=
A.6 B.5 C.4 D.3
38.(2018·全国·高考真题)在中,,BC=1,AC=5,则AB=
A. B. C. D.
39.(2019·全国·高考真题)下列函数中,以为周期且在区间(,)单调递增的是
A.f(x)=│cos 2x│ B.f(x)=│sin 2x│
C.f(x)=cos│x│ D.f(x)= sin│x│
40.(2018·全国·高考真题)若在是减函数,则的最大值是
A. B. C. D.
41.(2018·全国·高考真题)若,则
A. B. C. D.
42.(2023·全国·统考高考真题)已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )
A. B. C. D.
43.(2020·全国·统考高考真题)在△ABC中,cosC=,AC=4,BC=3,则tanB=( )
A. B.2 C.4 D.8
44.(2019·全国·统考高考真题)设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:
①在()有且仅有3个极大值点
②在()有且仅有2个极小值点
③在()单调递增
④的取值范围是[)
其中所有正确结论的编号是
A.①④ B.②③ C.①②③ D.①③④
45.(2023·全国·统考高考真题)设甲:,乙:,则( )
A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件
46.(2023·全国·统考高考真题)已知向量满足,且,则( )
A. B. C. D.
47.(2018·全国·高考真题)已知函数,则
A.的最小正周期为,最大值为
B.的最小正周期为,最大值为
C.的最小正周期为,最大值为
D.的最小正周期为,最大值为
48.(2021·浙江·统考高考真题)已知是互不相同的锐角,则在三个值中,大于的个数的最大值是( )
A.0 B.1 C.2 D.3
49.(2023·全国·统考高考真题)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
A. B. C. D.
50.(2022秋·吉林长春·高三长春市第二中学校考阶段练习)若,则( )
A. B. C. D.
51.(2019·全国·高考真题)tan255°=
A.-2- B.-2+ C.2- D.2+
52.(2023·全国·统考高考真题)在中,内角的对边分别是,若,且,则( )
A. B. C. D.
53.(2019·全国·高考真题)若x1=,x2=是函数f(x)=(>0)两个相邻的极值点,则=
A.2 B.
C.1 D.
54.(2023·全国·统考高考真题)正方形的边长是2,是的中点,则( )
A. B.3 C. D.5
55.(2015·全国·高考真题)函数=的部分图像如图所示,则的单调递减区间为
A. B.
C. D.
56.(2013·陕西·高考真题)设在中,角所对的边分别为, 若, 则的形状为 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定
57.(2023·全国·统考高考真题)已知实数满足,则的最大值是( )
A. B.4 C. D.7
58.(2017·全国·高考真题)已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
59.(2017·全国·高考真题)△ABC的内角A、B、C的对边分别为a、b、c.已知,a=2,c=,则C=
A. B. C. D.
60.(2018·天津·高考真题)将函数的图象向右平移个单位长度,所得图象对应的函数
A.在区间上单调递增 B.在区间上单调递减
C.在区间上单调递增 D.在区间上单调递减
61.(2019·天津·高考真题)已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则
A. B. C. D.
62.(2023·天津·统考高考真题)已知函数的一条对称轴为直线,一个周期为4,则的解析式可能为( )
A. B.
C. D.
63.(2017·全国·高考真题)已知,则.
A. B. C. D.
64.(2018·全国·高考真题)函数的最小正周期为
A. B. C. D.
65.(2020·山东·统考高考真题)在中,内角,,的对边分别是,,,若,且 ,则等于( )
A.3 B. C.3或 D.-3或
66.(2020·北京·统考高考真题)2020年3月14日是全球首个国际圆周率日( Day).历史上,求圆周率的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值.按照阿尔·卡西的方法,的近似值的表达式是( ).
A. B.
C. D.
67.(2017·全国·高考真题)设函数f(x)=cos(x+),则下列结论错误的是
A.f(x)的一个周期为 2π B.y=f(x)的图像关于直线x=对称
C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减
68.(2017·全国·高考真题)函数f(x)=sin(x+)+cos(x )的最大值为
A. B.1 C. D.
69.(2009·全国·高考真题)若将函数的图像向右平移个单位长度后,与函数的图像重合,则的最小值为
A. B. C. D.
70.(2017·全国·高考真题)函数y=1+x+的部分图象大致为( )
A.B. C. D.
二、多选题
71.(2022·全国·统考高考真题)已知函数的图像关于点中心对称,则( )
A.在区间单调递减
B.在区间有两个极值点
C.直线是曲线的对称轴
D.直线是曲线的切线
72.(2022·全国·统考高考真题)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A. B. C. D.
73.(2020·海南·高考真题)下图是函数y= sin(ωx+φ)的部分图像,则sin(ωx+φ)= ( )
A. B. C. D.
74.(2021·全国·统考高考真题)已知为坐标原点,点,,,,则( )
A. B.
C. D.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)