中小学教育资源及组卷应用平台
真题卷04 函数与导数(填空题)
一、填空题
1.(2022·全国·统考高考真题)若曲线有两条过坐标原点的切线,则a的取值范围是 .
【答案】
【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.
【详解】∵,∴,
设切点为,则,切线斜率,
切线方程为:,
∵切线过原点,∴,
整理得:,
∵切线有两条,∴,解得或,
∴的取值范围是,
故答案为:
2.(2022·全国·统考高考真题)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是 .
【答案】
【分析】法一:依题可知,方程的两个根为,即函数与函数的图象有两个不同的交点,构造函数,利用指数函数的图象和图象变换得到的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.
【详解】[方法一]:【最优解】转化法,零点的问题转为函数图象的交点
因为,所以方程的两个根为,
即方程的两个根为,
即函数与函数的图象有两个不同的交点,
因为分别是函数的极小值点和极大值点,
所以函数在和上递减,在上递增,
所以当时,,即图象在上方
当时,,即图象在下方
,图象显然不符合题意,所以.
令,则,
设过原点且与函数的图象相切的直线的切点为,
则切线的斜率为,故切线方程为,
则有,解得,则切线的斜率为,
因为函数与函数的图象有两个不同的交点,
所以,解得,又,所以,
综上所述,的取值范围为.
[方法二]:【通性通法】构造新函数,二次求导
=0的两个根为
因为分别是函数的极小值点和极大值点,
所以函数在和上递减,在上递增,
设函数,则,
若,则在上单调递增,此时若,则在
上单调递减,在上单调递增,此时若有和分别是函数
且的极小值点和极大值点,则,不符合题意;
若,则在上单调递减,此时若,则在上单调递增,在上单调递减,令,则,此时若有和分别是函数且的极小值点和极大值点,且,则需满足,,即故,所以.
【整体点评】法一:利用函数的零点与两函数图象交点的关系,由数形结合解出,突出“小题小做”,是该题的最优解;
法二:通过构造新函数,多次求导判断单调性,根据极值点的大小关系得出不等式,解出即可,该法属于通性通法.
3.(2021·全国·统考高考真题)已知函数是偶函数,则 .
【答案】1
【分析】利用偶函数的定义可求参数的值.
【详解】因为,故,
因为为偶函数,故,
时,整理得到,
故,
故答案为:1
4.(2021·全国·统考高考真题)函数的最小值为 .
【答案】1
【分析】由解析式知定义域为,讨论、、,并结合导数研究的单调性,即可求最小值.
【详解】由题设知:定义域为,
∴当时,,此时单调递减;
当时,,有,此时单调递减;
当时,,有,此时单调递增;
又在各分段的界点处连续,
∴综上有:时,单调递减,时,单调递增;
∴
故答案为:1.
5.(2021·全国·统考高考真题)曲线在点处的切线方程为 .
【答案】
【分析】先验证点在曲线上,再求导,代入切线方程公式即可.
【详解】由题,当时,,故点在曲线上.
求导得:,所以.
故切线方程为.
故答案为:.
6.(2021·全国·统考高考真题)已知函数,函数的图象在点和点的两条切线互相垂直,且分别交y轴于M,N两点,则取值范围是 .
【答案】
【分析】结合导数的几何意义可得,结合直线方程及两点间距离公式可得,,化简即可得解.
【详解】由题意,,则,
所以点和点,,
所以,
所以,
所以,
同理,
所以.
故答案为:
【点睛】关键点点睛:
解决本题的关键是利用导数的几何意义转化条件,消去一个变量后,运算即可得解.
7.(2021·全国·统考高考真题)写出一个同时具有下列性质①②③的函数 .
①;②当时,;③是奇函数.
【答案】(答案不唯一,均满足)
【分析】根据幂函数的性质可得所求的.
【详解】取,则,满足①,
,时有,满足②,
的定义域为,
又,故是奇函数,满足③.
故答案为:(答案不唯一,均满足)
8.(2023·全国·统考高考真题)已知函数在区间有且仅有3个零点,则的取值范围是 .
【答案】
【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.
【详解】因为,所以,
令,则有3个根,
令,则有3个根,其中,
结合余弦函数的图像性质可得,故,
故答案为:.
9.(2020·全国·统考高考真题)关于函数f(x)=有如下四个命题:
①f(x)的图象关于y轴对称.
②f(x)的图象关于原点对称.
③f(x)的图象关于直线x=对称.
④f(x)的最小值为2.
其中所有真命题的序号是 .
【答案】②③
【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.
【详解】对于命题①,,,则,
所以,函数的图象不关于轴对称,命题①错误;
对于命题②,函数的定义域为,定义域关于原点对称,
,
所以,函数的图象关于原点对称,命题②正确;
对于命题③,,
,则,
所以,函数的图象关于直线对称,命题③正确;
对于命题④,当时,,则,
命题④错误.
故答案为:②③.
【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.
10.(2022·北京·统考高考真题)函数的定义域是 .
【答案】
【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;
【详解】解:因为,所以,解得且,
故函数的定义域为;
故答案为:
11.(2019·全国·高考真题)曲线在点处的切线方程为 .
【答案】.
【分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程
【详解】详解:
所以,
所以,曲线在点处的切线方程为,即.
【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.
12.(2021·浙江·统考高考真题)已知,函数若,则 .
【答案】2
【分析】由题意结合函数的解析式得到关于的方程,解方程可得的值.
【详解】,故,
故答案为:2.
13.(2020·全国·统考高考真题)曲线的一条切线的斜率为2,则该切线的方程为 .
【答案】
【分析】设切线的切点坐标为,对函数求导,利用,求出,代入曲线方程求出,得到切线的点斜式方程,化简即可.
【详解】设切线的切点坐标为,
,所以切点坐标为,
所求的切线方程为,即.
故答案为:.
【点睛】本题考查导数的几何意义,属于基础题.
14.(2023·全国·统考高考真题)若为偶函数,则 .
【答案】2
【分析】利用偶函数的性质得到,从而求得,再检验即可得解.
【详解】因为为偶函数,定义域为,
所以,即,
则,故,
此时,
所以,
又定义域为,故为偶函数,
所以.
故答案为:2.
15.(2019·全国·高考真题)已知是奇函数,且当时,.若,则 .
【答案】-3
【分析】当时,代入条件即可得解.
【详解】因为是奇函数,且当时,.
又因为,,
所以,两边取以为底的对数得,所以,即.
【点睛】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案.
16.(2022·天津·统考高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为 .
【答案】
【分析】设,,分析可知函数至少有一个零点,可得出,求出的取值范围,然后对实数的取值范围进行分类讨论,根据题意可得出关于实数的不等式,综合可求得实数的取值范围.
【详解】设,,由可得.
要使得函数至少有个零点,则函数至少有一个零点,则,
解得或.
①当时,,作出函数、的图象如下图所示:
此时函数只有两个零点,不合乎题意;
②当时,设函数的两个零点分别为、,
要使得函数至少有个零点,则,
所以,,解得;
③当时,,作出函数、的图象如下图所示:
由图可知,函数的零点个数为,合乎题意;
④当时,设函数的两个零点分别为、,
要使得函数至少有个零点,则,
可得,解得,此时.
综上所述,实数的取值范围是.
故答案为:.
【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:
(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;
(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.
17.(2023·全国·统考高考真题)设,若函数在上单调递增,则a的取值范围是 .
【答案】
【分析】原问题等价于恒成立,据此将所得的不等式进行恒等变形,可得,由右侧函数的单调性可得实数的二次不等式,求解二次不等式后可确定实数的取值范围.
【详解】由函数的解析式可得在区间上恒成立,
则,即在区间上恒成立,
故,而,故,
故即,故,
结合题意可得实数的取值范围是.
故答案为:.
18.(2021·北京·统考高考真题)已知函数,给出下列四个结论:
①若,恰 有2个零点;
②存在负数,使得恰有1个零点;
③存在负数,使得恰有3个零点;
④存在正数,使得恰有3个零点.
其中所有正确结论的序号是 .
【答案】①②④
【分析】由可得出,考查直线与曲线的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误.
【详解】对于①,当时,由,可得或,①正确;
对于②,考查直线与曲线相切于点,
对函数求导得,由题意可得,解得,
所以,存在,使得只有一个零点,②正确;
对于③,当直线过点时,,解得,
所以,当时,直线与曲线有两个交点,
若函数有三个零点,则直线与曲线有两个交点,
直线与曲线有一个交点,所以,,此不等式无解,
因此,不存在,使得函数有三个零点,③错误;
对于④,考查直线与曲线相切于点,
对函数求导得,由题意可得,解得,
所以,当时,函数有三个零点,④正确.
故答案为:①②④.
【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:
(1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;
(2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;
(3)得解,即由列出的式子求出参数的取值范围.
19.(2020·全国·统考高考真题)设函数.若,则a= .
【答案】1
【分析】由题意首先求得导函数的解析式,然后得到关于实数a的方程,解方程即可确定实数a的值
【详解】由函数的解析式可得:,
则:,据此可得:,
整理可得:,解得:.
故答案为:.
【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题.
20.(2018·全国·高考真题)已知函数,则的最小值是 .
【答案】
【分析】方法一:由,确定出函数的单调区间,减区间,从而确定出函数的最小值点,代入求得函数的最小值.
【详解】[方法一]: 【通性通法】导数法
.
令,得,即在区间内单调递增;
令,得,即在区间内单调递减.
则.
故答案为:.
[方法二]: 三元基本不等式的应用
因为,
所以
.
当且仅当,即时,取等号.
根据可知,是奇函数,于是,此时.
故答案为:.
[方法三]: 升幂公式+多元基本不等式
,
,
当且仅当,即时,.
根据可知,是奇函数,于是.
故答案为:.
[方法四]: 化同角+多元基本不等式+放缩
,当且仅当时等号成立.
故答案为:.
[方法五]:万能公式+换元+导数求最值
设,则可化为,
当时,;当时,,对分母求导后易知,
当时,有最小值.
故答案为:.
[方法六]: 配方法
,
当且仅当即时,取最小值.
故答案为:.
[方法七]:【最优解】周期性应用+导数法
因为,所以,
即函数的一个周期为,因此时,的最小值即为函数的最小值.
当时,,
当时, 因为
,令,解得或,由,,,所以的最小值为.
故答案为:.
【整体点评】方法一:直接利用导数判断函数的单调性,得出极值点,从而求出最小值,是求最值的通性通法;
方法二:通过对函数平方,创造三元基本不等式的使用条件,从而解出;
方法三:基本原理同方法三,通过化同角利用多元基本不等式求解,难度较高;
方法四:通过化同角以及化同名函数,放缩,再结合多元基本不等式求解,难度较高;
方法五:通过万能公式化简换元,再利用导数求出最值,该法也较为常规;
方法六:通过配方,将函数转化成平方和的形式,构思巧妙;
方法七:利用函数的周期性,缩小函数的研究范围,再利用闭区间上的最值求法解出,解法常规,是该题的最优解.
21.(2018·全国·高考真题)函数在的零点个数为 .
【答案】
【分析】方法一:求出的范围,再由函数值为零,得到的取值即得零点个数.
【详解】[方法一]:【最优解】
由题可知,或
解得,或故有3个零点.
故答案为:.
方法二:
令,即,解得,,分别令,得,所以函数在的零点的个数为3.
故答案为:.
【整体点评】方法一:先求出的范围,再根据余弦函数在该范围内的零点,从而解出,是该题的最优解;
方法二:先求出函数的所有零点,再根据题中范围限制,找出符合题意的零点.
22.(2020·北京·统考高考真题)函数的定义域是 .
【答案】
【分析】根据分母不为零、真数大于零列不等式组,解得结果.
【详解】由题意得,
故答案为:
【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.
23.(2018·全国·高考真题)已知函数,若,则 .
【答案】-7
【详解】分析:首先利用题的条件,将其代入解析式,得到,从而得到,从而求得,得到答案.
详解:根据题意有,可得,所以,故答案是.
点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.
24.(2020·江苏·统考高考真题)已知y=f(x)是奇函数,当x≥0时, ,则f(-8)的值是 .
【答案】
【分析】先求,再根据奇函数求
【详解】,因为为奇函数,所以
故答案为:
【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.
25.(2018·全国·高考真题)曲线在点处的切线的斜率为,则 .
【答案】
【分析】求导,利用导数的几何意义计算即可.
【详解】解:
则
所以
故答案为-3.
【点睛】本题主要考查导数的计算和导数的几何意义,属于基础题.
26.(2018·全国·高考真题)曲线在点处的切线方程为 .
【答案】
【分析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.
【详解】
【点睛】求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.
27.(2009·宁夏·高考真题)曲线在点(0,1)处的切线方程为 .
【答案】
【分析】对函数求导,将代入可得切线斜率,进而得到切线方程.
【详解】解:,
切线的斜率为
则切线方程为,即
故答案为:
28.(2020·北京·统考高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W与时间t的关系为,用的大小评价在这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.
给出下列四个结论:
①在这段时间内,甲企业的污水治理能力比乙企业强;
②在时刻,甲企业的污水治理能力比乙企业强;
③在时刻,甲、乙两企业的污水排放都已达标;
④甲企业在这三段时间中,在的污水治理能力最强.
其中所有正确结论的序号是 .
【答案】①②③
【分析】根据定义逐一判断,即可得到结果
【详解】表示区间端点连线斜率的负数,
在这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;
甲企业在这三段时间中,甲企业在这段时间内,甲的斜率最小,其相反数最大,即在的污水治理能力最强.④错误;
在时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;
在时刻,甲、乙两企业的污水排放量都在污水达标排放量以下,所以都已达标;③正确;
故答案为:①②③
【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.
29.(2017·全国·高考真题)设函数则满足的x的取值范围是 .
【答案】
【详解】由题意得: 当时,恒成立,即;当时, 恒成立,即;当时,,即.综上,x的取值范围是.
【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.
30.(2017·全国·高考真题)已知函数是定义在上的奇函数,当时,,则 .
【答案】12
【分析】由函数的奇偶性可知,代入函数解析式即可求出结果.
【详解】函数是定义在上的奇函数,,则,
.
【点睛】本题主要考查函数的奇偶性,属于基础题型.
31.(2023·天津·统考高考真题)若函数有且仅有两个零点,则的取值范围为 .
【答案】
【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断的取值范围.
【详解】(1)当时,,
即,
若时,,此时成立;
若时,或,
若方程有一根为,则,即且;
若方程有一根为,则,解得:且;
若时,,此时成立.
(2)当时,,
即,
若时,,显然不成立;
若时,或,
若方程有一根为,则,即;
若方程有一根为,则,解得:;
若时,,显然不成立;
综上,
当时,零点为,;
当时,零点为,;
当时,只有一个零点;
当时,零点为,;
当时,只有一个零点;
当时,零点为,;
当时,零点为.
所以,当函数有两个零点时,且.
故答案为:.
【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.
32.(2019·江苏·高考真题)函数的定义域是 .
【答案】.
【分析】由题意得到关于x的不等式,解不等式可得函数的定义域.
【详解】由已知得,
即
解得,
故函数的定义域为.
【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.
33.(2015·全国·高考真题)已知曲线在点处的切线与曲线相切,则a= .
【答案】8
【详解】试题分析:函数在处的导数为,所以切线方程为;曲线的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.
考点:导函数的运用.
【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.
34.(2023·北京·统考高考真题)已知函数,则 .
【答案】1
【分析】根据给定条件,把代入,利用指数、对数运算计算作答.
【详解】函数,所以.
故答案为:1
35.(2019·江苏·高考真题)在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是 .
【答案】4.
【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离
【详解】当直线平移到与曲线相切位置时,切点Q即为点P到直线的距离最小.
由,得,,
即切点,
则切点Q到直线的距离为,
故答案为.
【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.
36.(2020·江苏·统考高考真题)在平面直角坐标系xOy中,已知,A,B是圆C:上的两个动点,满足,则△PAB面积的最大值是 .
【答案】
【分析】根据条件得,再用圆心到直线距离表示三角形PAB面积,最后利用导数求最大值.
【详解】
设圆心到直线距离为,则,
所以点P到AB的距离为或,且
所以
令(负值舍去)
当时,;当时,,因此当时,取最大值,即取最大值为,
故答案为:
【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.
37.(2018·天津·高考真题)已知,函数若对任意x∈[–3,+),f(x)≤恒成立,则a的取值范围是 .
【答案】
【分析】由题意分类讨论和两种情况,结合恒成立的条件整理计算即可求得最终结果.
【详解】分类讨论:①当时,即:,
整理可得:,
由恒成立的条件可知:,
结合二次函数的性质可知:
当时,,则;
②当时,即:,整理可得:,
由恒成立的条件可知:,
结合二次函数的性质可知:
当或时,,则;
综合①②可得的取值范围是,故答案为.
点睛:对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立 a≥f(x)max;(2)a≤f(x)恒成立 a≤f(x)min.有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.
38.(2017·全国·高考真题)曲线在点(1,2)处的切线方程为 .
【答案】
【详解】设,则,所以,
所以曲线在点处的切线方程为,即.
点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设是曲线上的一点,则以为切点的切线方程是.若曲线在点处的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.
39.(2016·全国·高考真题)已知为偶函数,当时,,则曲线在点处的切线方程是 .
【答案】
【详解】试题分析:当时,,则.又因为为偶函数,所以,所以,则切线斜率为,所以切线方程为,即.
【考点】函数的奇偶性与解析式,导数的几何意义.
【知识拓展】本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为.
40.(2019·江苏·高考真题)设是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中.若在区间上,关于的方程有8个不同的实数根,则 的取值范围是 .
【答案】.
【分析】分别考查函数和函数图像的性质,考查临界条件确定k的取值范围即可.
【详解】当时,即
又为奇函数,其图象关于原点对称,其周期为,如图,函数与的图象,要使在上有个实根,只需二者图象有个交点即可.
当时,函数与的图象有个交点;
当时,的图象为恒过点的直线,只需函数与的图象有个交点.当与图象相切时,圆心到直线的距离为,即,得,函数与的图象有个交点;当过点时,函数与的图象有个交点,此时,得.
综上可知,满足在上有个实根的的取值范围为.
【点睛】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围.
41.(2018·江苏·高考真题)若函数在内有且只有一个零点,则在上的最大值与最小值的和为 .
【答案】
【分析】方法一:利用导数判断函数在上的单调性,确定零点位置,求出参数,再根据函数在上的单调性确定函数最值,即可解出.
【详解】[方法一]:【通性通法】单调性法
求导得,
当时,函数在区间内单调递增,且,所以函数在内无零点;
当时,函数在区间内单调递减,在区间内单调递增.
当时,;当时,.
要使函数在区间内有且仅有一个零点,只需,解得.
于是函数在区间上单调递增,在区间上单调递减,,所以最大值与最小值之和为.
故答案为:.
[方法二]: 等价转化
由条件知有唯一的正实根,于是.令,则,所以在区间内单调递减,在区间内单调递增,且,当时,;当时,.
只需直线与的图像有一个交点,故,下同方法一.
[方法三]:【最优解】三元基本不等式
同方法二得,,当且仅当时取等号,
要满足条件只需,下同方法一.
[方法四]:等价转化
由条件知有唯一的正实根,即方程有唯一的正实根,整理得,即函数与直线在第一象限内有唯一的交点.于是平移直线与曲线相切时,满足题意,如图.
设切点,因为,于是,解得,
下同方法一.
【整体点评】方法一:利用导数得出函数在上的单调性,确定零点位置,求出参数,进而问题转化为闭区间上的最值问题,从而解出,是该类型题的通性通法;
方法二:利用等价转化思想,函数在上有唯一零点转化为两函数图象有唯一交点,从而求出参数,使问题得解;
方法三:通过三元基本不等式确定取最值条件,从而求出参数,使问题得解,是该题的最优解;
方法四:将函数在上有唯一零点转化为直线与曲线相切,从而求出参数,使问题得解.
42.(2015·全国·高考真题)若函数为偶函数,则 .
【答案】1
【详解】试题分析:由函数为偶函数函数为奇函数,
.
考点:函数的奇偶性.
【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型.首先利用转化思想,将函数为偶函数转化为 函数为奇函数,然后再利用特殊与一般思想,取.
43.(2017·江苏·高考真题)已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是 .
【答案】
【详解】因为,所以函数是奇函数,
因为,所以数在上单调递增,
又,即,所以,即,
解得,故实数的取值范围为.
点睛:解函数不等式时,首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在函数的定义域内.
44.(2018·江苏·高考真题)函数的定义域为 .
【答案】[2,+∞)
【详解】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.
详解:要使函数有意义,则,解得,即函数的定义域为.
点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.
45.(2023·北京·统考高考真题)设,函数,给出下列四个结论:
①在区间上单调递减;
②当时,存在最大值;
③设,则;
④设.若存在最小值,则a的取值范围是.
其中所有正确结论的序号是 .
【答案】②③
【分析】先分析的图像,再逐一分析各结论;对于①,取,结合图像即可判断;对于②,分段讨论的取值范围,从而得以判断;对于③,结合图像可知的范围;对于④,取,结合图像可知此时存在最小值,从而得以判断.
【详解】依题意,,
当时,,易知其图像为一条端点取不到值的单调递增的射线;
当时,,易知其图像是,圆心为,半径为的圆在轴上方的图像(即半圆);
当时,,易知其图像是一条端点取不到值的单调递减的曲线;
对于①,取,则的图像如下,
显然,当,即时,在上单调递增,故①错误;
对于②,当时,
当时,;
当时,显然取得最大值;
当时,,
综上:取得最大值,故②正确;
对于③,结合图像,易知在,且接近于处,的距离最小,
当时,,当且接近于处,,
此时,,故③正确;
对于④,取,则的图像如下,
因为,
结合图像可知,要使取得最小值,则点在上,点在,
同时的最小值为点到的距离减去半圆的半径,
此时,因为的斜率为,则,故直线的方程为,
联立,解得,则,
显然在上,满足取得最小值,
即也满足存在最小值,故的取值范围不仅仅是,故④错误.
故答案为:②③.
【点睛】关键点睛:本题解决的关键是分析得的图像,特别是当时,的图像为半圆,解决命题④时,可取特殊值进行排除即可.
46.(2019·浙江·高考真题)已知,函数,若存在,使得,则实数的最大值是 .
【答案】
【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究入手,令,从而使问题加以转化,通过绘制函数图象,观察得解.
【详解】使得,
使得令,则原不等式转化为存在,
由折线函数,如图
只需,即,即的最大值是
【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.
47.(2018·江苏·高考真题)函数满足,且在区间上,则的值为 .
【答案】
【详解】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.
详解:由得函数的周期为4,所以因此
点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.
48.(2019·天津·高考真题) 曲线在点处的切线方程为 .
【答案】
【分析】利用导数值确定切线斜率,再用点斜式写出切线方程.
【详解】,
当时其值为,
故所求的切线方程为,即.
【点睛】曲线切线方程的求法:
(1)以曲线上的点(x0,f(x0))为切点的切线方程的求解步骤:
①求出函数f(x)的导数f′(x);
②求切线的斜率f′(x0);
③写出切线方程y-f(x0)=f′(x0)(x-x0),并化简.
(2)如果已知点(x1,y1)不在曲线上,则设出切点(x0,y0),解方程组得切点(x0,y0),进而确定切线方程.
49.(2019·江苏·高考真题)在平面直角坐标系中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是 .
【答案】.
【分析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标.
【详解】设点,则.又,
当时,,
点A在曲线上的切线为,
即,
代入点,得,
即,
考查函数,当时,,当时,,
且,当时,单调递增,
注意到,故存在唯一的实数根,此时,
故点的坐标为.
【点睛】导数运算及切线的理解应注意的问题:
一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.
二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.
50.(2018·天津·高考真题)已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是 .
【答案】
【详解】分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.
详解:分类讨论:当时,方程即,
整理可得:,
很明显不是方程的实数解,则,
当时,方程即,
整理可得:,
很明显不是方程的实数解,则,
令,
其中,
原问题等价于函数与函数有两个不同的交点,求的取值范围.
结合对勾函数和函数图象平移的规律绘制函数的图象,
同时绘制函数的图象如图所示,考查临界条件,
结合观察可得,实数的取值范围是.
点睛:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:
(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.
(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
真题卷04 函数与导数(填空题)
一、填空题
1.(2022·全国·统考高考真题)若曲线有两条过坐标原点的切线,则a的取值范围是 .
2.(2022·全国·统考高考真题)已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是 .
3.(2021·全国·统考高考真题)已知函数是偶函数,则 .
4.(2021·全国·统考高考真题)函数的最小值为 .
5.(2021·全国·统考高考真题)曲线在点处的切线方程为 .
6.(2021·全国·统考高考真题)已知函数,函数的图象在点和点的两条切线互相垂直,且分别交y轴于M,N两点,则取值范围是 .
7.(2021·全国·统考高考真题)写出一个同时具有下列性质①②③的函数 .
①;②当时,;③是奇函数.
8.(2023·全国·统考高考真题)已知函数在区间有且仅有3个零点,则的取值范围是 .
9.(2020·全国·统考高考真题)关于函数f(x)=有如下四个命题:
①f(x)的图象关于y轴对称.
②f(x)的图象关于原点对称.
③f(x)的图象关于直线x=对称.
④f(x)的最小值为2.
其中所有真命题的序号是 .
10.(2022·北京·统考高考真题)函数的定义域是 .
11.(2019·全国·高考真题)曲线在点处的切线方程为 .
12.(2021·浙江·统考高考真题)已知,函数若,则 .
13.(2020·全国·统考高考真题)曲线的一条切线的斜率为2,则该切线的方程为 .
14.(2023·全国·统考高考真题)若为偶函数,则 .
15.(2019·全国·高考真题)已知是奇函数,且当时,.若,则 .
16.(2022·天津·统考高考真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为 .
17.(2023·全国·统考高考真题)设,若函数在上单调递增,则a的取值范围是 .
18.(2021·北京·统考高考真题)已知函数,给出下列四个结论:
①若,恰 有2个零点;
②存在负数,使得恰有1个零点;
③存在负数,使得恰有3个零点;
④存在正数,使得恰有3个零点.
其中所有正确结论的序号是 .
19.(2020·全国·统考高考真题)设函数.若,则a= .
20.(2018·全国·高考真题)已知函数,则的最小值是 .
21.(2018·全国·高考真题)函数在的零点个数为 .
22.(2020·北京·统考高考真题)函数的定义域是 .
23.(2018·全国·高考真题)已知函数,若,则 .
24.(2020·江苏·统考高考真题)已知y=f(x)是奇函数,当x≥0时, ,则f(-8)的值是 .
25.(2018·全国·高考真题)曲线在点处的切线的斜率为,则 .
26.(2018·全国·高考真题)曲线在点处的切线方程为 .
27.(2009·宁夏·高考真题)曲线在点(0,1)处的切线方程为 .
28.(2020·北京·统考高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W与时间t的关系为,用的大小评价在这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.
给出下列四个结论:
①在这段时间内,甲企业的污水治理能力比乙企业强;
②在时刻,甲企业的污水治理能力比乙企业强;
③在时刻,甲、乙两企业的污水排放都已达标;
④甲企业在这三段时间中,在的污水治理能力最强.
其中所有正确结论的序号是 .
29.(2017·全国·高考真题)设函数则满足的x的取值范围是 .
30.(2017·全国·高考真题)已知函数是定义在上的奇函数,当时,,则 .
31.(2023·天津·统考高考真题)若函数有且仅有两个零点,则的取值范围为 .
32.(2019·江苏·高考真题)函数的定义域是 .
33.(2015·全国·高考真题)已知曲线在点处的切线与曲线相切,则a= .
34.(2023·北京·统考高考真题)已知函数,则 .
35.(2019·江苏·高考真题)在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是 .
36.(2020·江苏·统考高考真题)在平面直角坐标系xOy中,已知,A,B是圆C:上的两个动点,满足,则△PAB面积的最大值是 .
37.(2018·天津·高考真题)已知,函数若对任意x∈[–3,+),f(x)≤恒成立,则a的取值范围是 .
38.(2017·全国·高考真题)曲线在点(1,2)处的切线方程为 .
39.(2016·全国·高考真题)已知为偶函数,当时,,则曲线在点处的切线方程是 .
40.(2019·江苏·高考真题)设是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中.若在区间上,关于的方程有8个不同的实数根,则 的取值范围是 .
41.(2018·江苏·高考真题)若函数在内有且只有一个零点,则在上的最大值与最小值的和为 .
42.(2015·全国·高考真题)若函数为偶函数,则 .
43.(2017·江苏·高考真题)已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是 .
44.(2018·江苏·高考真题)函数的定义域为 .
45.(2023·北京·统考高考真题)设,函数,给出下列四个结论:
①在区间上单调递减;
②当时,存在最大值;
③设,则;
④设.若存在最小值,则a的取值范围是.
其中所有正确结论的序号是 .
46.(2019·浙江·高考真题)已知,函数,若存在,使得,则实数的最大值是 .
47.(2018·江苏·高考真题)函数满足,且在区间上,则的值为 .
48.(2019·天津·高考真题) 曲线在点处的切线方程为 .
49.(2019·江苏·高考真题)在平面直角坐标系中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是 .
50.(2018·天津·高考真题)已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是 .
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)