(共23张PPT)
13.2 画轴对称图形
第十三章 轴对称
第1课时 画轴对称图形
学习目标
1.能够按要求作出简单平面图形经过轴对称后的图形.
2.培养学生运用轴对称解决实际问题的基本能力.
3.通过作轴对称图形感受对称美,懂得生活中的美可以用数学去分析解释.
重点:能够按要求作出简单平面图形经过轴对称后的图形.
难点:应用轴对称解决实际问题.
课前预习
阅读课本P67-68页内容,了解本节主要内容.
大小
垂直平分
形状
对称轴
对称图形
新课导入
(1)这些图案有什么共同特点?
(2)能否根据其中的一部分画出整个图案?
轴对称变换
一
新知讲解
在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?
请动手在一张纸上画一个你喜欢的图形,将这张纸 纸折叠,描图,再打开纸,看看你得到了什么?
由一个平面图形得到与它关于一条直线对称的图形.
由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.
知识要点
例1 将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )
图①
图②
图③
图④
A
B
C
D
B
动手剪一剪
典例分析
例2 如图,将长方形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=50°,则∠CFD的度数为( )
A.20°
B.30°
C.40°
D.50°
C
方法归纳:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.
作轴对称图形
二
问题1:如何画一个点的轴对称图形?
画出点A关于直线l的对称点A′.
﹒
l
A
﹒
A′
O
作法:
(1)过点A作l的垂线,垂足为点O.
(2)在垂线上截取OA′=OA.
点A′就是点A关于直线l的对称点.
互动探究
新知讲解
问题2:如何画一条线段的对称图形?
已知线段AB,画出AB关于直线l的对称线段.
A
B
(图1)
(图2)
(图3)
A
B
l
l
A
B
l
A ′
A ′
A ′
B ′
(B ′)
B ′
想一想:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?
例3 如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.
A
B
C
分析:△ABC可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l的对称点,连接这些对称点,就能得到要画的图形.
作法:(1)过点A画直线l的垂线,垂足为点O,在垂线上截取OA′=OA,A′就是点A关于直线l的对称点.
(3)连接A′B′,B′C′,C′A′,得到△ A′B′C′
即为所求.
(2)同理,分别画出点B,C关于直线l的对称点B′,C′ .
A
B
C
A′
B′
C′
O
方法归纳
作轴对称图形的方法
几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.
例4 在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.
A
B
C
A
B
C
A
B
C
A
B
C
(F)
(D)
E
(E)
F
D
(F)
D
E
(D)
(E)
F
方法归纳:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.
1.作已知点关于某直线的对称点的第一步是( )
A.过已知点作一条直线与已知直线相交
B.过已知点作一条直线与已知直线垂直
C.过已知点作一条直线与已知直线平行
D.不确定
B
随堂练习
2.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.
55°
3.如图,把下列图形补成关于直线l的对称图形.
4. 如图给出了一个图案的一半,虚线 l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.
B
A
C
D
E
F
G
H
l
5.如图,画△ABC关于直线m的对称图形.
m
A
B
C
(A ′)
C ′
B ′
6.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,这样的三角形共有_____个.请在下面所给的格纸中一一画出(所给的六个格纸未必全用).
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
5
画轴对称图形
作图原理
作图方法
对称轴是对称点连线段的垂直平分线.
(1)找特征点;
(2)作垂线;
(3)截取等长;
(4)依次连线.
课堂小结
本课结束
*
*