《12.1幂的运算》解答题专题提升训练(含答案) 2023-2024学年华东师大版八年级数学上册

文档属性

名称 《12.1幂的运算》解答题专题提升训练(含答案) 2023-2024学年华东师大版八年级数学上册
格式 docx
文件大小 30.8KB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2023-08-07 22:58:33

图片预览

文档简介

2023-2024学年华东师大版八年级数学上册《12.1幂的运算》解答题专题提升训练(附答案)
1.根据已知求值:
(1)已知am=2,an=5,求a3m+2n的值;
(2)已知3×9m×27m=321,求m的值.
2.(1)已知m+4n﹣3=0,求2m 16n的值.
(2)已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.
3.“已知am=4,am+n=20,求an的值.”这个问题,我们可以这样思考:
逆向运用同底数幂的乘法公式,可得:am+n=aman,所以20=4an,所以an=5.
请利用这样的思考方法解决下列问题:
已知am=3,an=5,求下列代数式的值.
(1)a2m+n; (2)am﹣3n.
4.已知4×16m×64m=421,求(﹣m2)3÷(m3 m2)的值.
5.已知:5a=4,5b=6,5c=9,
(1)求52a+c﹣b的值;
(2)试说明:2b=a+c.
6.已知n为正整数,且x2n=4
(1)求xn﹣3 x3(n+1)的值;
(2)求9(x3n)2﹣13(x2)2n的值.
7.已知(ax)y=a6,(ax)2÷ay=a3
(1)求xy和2x﹣y的值;
(2)求4x2+y2的值.
8.(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:
①求:22m+3n的值
②求:24m﹣6n的值
(2)已知2×8x×16=223,求x的值.
9.若(9m+1)2=316,求正整数m的值.
10.若an+1 am+n=a6,且m﹣2n=1,求mn的值.
11.若(am+1bn+2)(a2n﹣1b2n)=a5b3,则求m+n的值.
12.若10m=5,10b=3,求102m+3b的值.
13.已知2x+3y﹣3=0,求9x 27y的值.
14.(1)已知am=2,an=3,求①am+n的值;②a3m﹣2n的值
(2)已知2×8x×16=223,求x的值.
15.已知xm=2,xn=3,求x3m﹣2n的值.
16.已知ax ay=a5,ax÷ay=a,求x2﹣y2的值.
17.(1)已知ax=5,ax+y=25,求ax+ay的值;
(2)已知10α=5,10β=6,求102α+2β的值.
18.已知2x+3 3x+3=36x﹣2,求x的值.
19.已知n正整数,且x2n=2,求(3x3n)2﹣4(x2)2n的值.
20.已知:an=2,am=3,ak=4,试求a2n+m﹣2k的值.
参考答案
1.解:(1)a3m+2n=(am)3 (an)2=23×52=200;
(2)∵3×9m×27m=321,
∴3×32m×33m=321,
31+5m=321,
∴1+5m=21,
m=4.
2.解:(1)∵m+4n﹣3=0
∴m+4n=3
原式=2m 24n
=2m+4n
=23
=8.
(2)原式=(x2n)3﹣2(x2n)2,
=43﹣2×42,
=32,
3.解:(1)当am=3,an=5时,
a2m+n=a2m an
=(am)2 an
=32×5=45;
(2)当am=3,an=5时,
am﹣3n=am÷a3n
=am÷(an)3
=3÷53
=.
4.解:∵4×16m×64m=421,
∴41+2m+3m=421,
∴5m+1=21,
∴m=4,
∴(﹣m2)3÷(m3 m2)
=﹣m6÷m5
=﹣m
=﹣4.
5.解:(1)5 2a+c﹣b=52a×5c÷5b=(5a)2×5c÷5b=42×9÷6=24;
(2)∵5a+c=5a×5c=4×9=36
52b=62=36,
∴5a+c=52b,
∴a+c=2b.
6.解:(1)∵x2n=4,
∴xn﹣3 x3(n+1)=xn﹣3 x3n+3=x4n=(x2n)2=42=16;
(2)∵x2n=4,
∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.
7.解:(1)∵(ax)y=a6,(ax)2÷ay=a3
∴axy=a6,a2x÷ay=a2x﹣y=a3,
∴xy=6,2x﹣y=3.
(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.
8.解:(1)∵4m=a,8n=b,
∴22m=a,23n=b,
①22m+3n=22m 23n=ab;
②24m﹣6n=24m÷26n=(22m)2÷(23n)2=;
(2)∵2×8x×16=223,
∴2×(23)x×24=223,
∴2×23x×24=223,
∴1+3x+4=23,
解得:x=6.
9.解:∵(9m+1)2=92m+2=32(2m+2)=316,
∴2(2m+2)=16,
解得:m=3.
10.解:由题意得,an+1 am+n=am+2n+1=a6,
则m+2n=5,
∵,
∴,
故mn=3.
11.解:(am+1bn+2)(a2n﹣1b2n)=am+1×a2n﹣1×bn+2×b2n
=am+1+2n﹣1×bn+2+2n
=am+2nb3n+2=a5b3.
∴m+2n=5,3n+2=3,解得:n=,m=,
m+n=.
12.解:∵10m=5,10b=3,
∴102m+3b=102m 103b,
=(10m)2×(10b)3=52×33,
=675.
13.解:∵2x+3y﹣3=0,
∴2x+3y=3,
则9x 27y=32x 33y=32x+3y=33=27.
故答案为:27.
14.解:(1)①am+n=am an
=2×3=6;
②a3m﹣2n=a3m÷a2n
=(am)3÷(an)2
=23÷32
=;
(2)∵2×8x×16=223
∴2×(23)x×24=223,
∴2×23x×24=223,
∴1+3x+4=23,
解得:x=6.
15.解:原式=(xm)3÷(xn)2
=8÷9
=.
16.解:由题意可知:ax+y=a5;
ax﹣y=a,
∴x﹣y=1,x+y=5
∴x2﹣y2=(x+y)(x﹣y)=5;
17.解:(1)∵ax+y=ax ay=25,ax=5,
∴ay=5,
∴ax+ay=5+5=10;
(2)102α+2β=(10α)2 (10β)2=52×62=900.
18.解:∵2x+3 3x+3=(2×3)x+3=6x+3,36x﹣2=(62)x﹣2=62x﹣4,
∴x+3=2x﹣4,
解得x=7.
19.解:原式=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2,
当x2n=2时,原式=9×23﹣16=56.
20.解:∵an=2,am=3,ak=4,
∴a2n+m﹣2k=a2n am÷a2k,
=(an)2 am÷(ak)2,
=4×3÷16,
=.
故答案为:.