第二章一元二次方程同步练习 北师大版数学九年级上册(含答案)

文档属性

名称 第二章一元二次方程同步练习 北师大版数学九年级上册(含答案)
格式 docx
文件大小 60.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2023-08-08 16:48:48

图片预览

文档简介

第二章 一元二次方程 同步练习 九年级上册北师大版数学
一.选择题(共5小题)
1.下列方程中是一元二次方程是(  )
A. B.2x+6=7 C.x2+y2=5 D.3x2﹣5x+2=0
2.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是(  )
A.k≥﹣1且k≠0 B.k≥﹣1 C.k>﹣1 D.k>﹣1且k≠0
3.已知关于x的一元二次方程ax2+bx﹣2=0的一个根是﹣1,则a﹣b+3的值为(  )
A.1 B.3 C.5 D.7
4.有一个人患流感,经过两轮传染后共有64个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为(  )
A.1+2x=64 B.1+x2=64 C.1+x+x2=64 D.(1+x)2=64
5.若关于x的方程ax2+4x﹣2=0有两个不相等的实数根,且关于x的分式方程有正数解,则符合条件的整数a的个数是(  )
A.1 B.2 C.3 D.4
二.填空题(共11小题)
6.关于x的方程(k﹣1)x|k|+1﹣x+5=0是一元二次方程,则k=   .
7.已知m,n是方程x2+2x﹣3=0的两个根,则=   .
8.若a,b分别是方程3x2﹣9x+5=0的两根,则a2﹣4a﹣b=   .
9.已知实数m,n(m≠n)满足等式m2﹣2m﹣1=0,n2﹣2n﹣1=0,则的值是    .
10.已知实数满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则+的值是   .
11.关于x的一元二次方程x2+(2k+1)x+2k2﹣1=0的两个实数根x1,x2满足x12+x22=9,则k=   .
12.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1,1,2,它们除了数字不同外,其他都完全相同.小红从布袋中随机摸出一个小球,记下数字作为a的值,不放回,再从布袋中随机摸出一个小球,记下数字作为b的值,使得关于y的一元二次方程有实数根的概率是    .
13.代数式a2﹣2a+5的最小值为    .
14.多项式a2﹣2ab+2b2﹣6b+27的最小值为   .
15.若a,b为有理数,且2a2﹣2ab+b2﹣6a+9=0,则a+2b=   .
16.已知△ABC的三边长为整数a,b,c,且满足a2+b2﹣6a﹣4b+13=0,则c为    .
三.解答题(共5小题)
17.解方程:
(1)2x2﹣14=x2+2x+10; (2)(x﹣1)(2x+3)=﹣1.
18.计算:
(1)x2+2x+1=9; (2)2x2﹣x﹣6=0.
19.某水果店以相同的进价购进两批樱桃,第一批80千克,每千克16元出售;第二批60千克,每千克18元出售,两批车厘子全部售完,店主共获利960元.
(1)求樱桃的进价是每千克多少元?
(2)该水果店一相同的进价购进第三批樱桃若干,第一天将樱桃涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批樱桃,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时樱桃售完,店主销售第三批樱桃获得的利润为850元,求第二天樱桃的售价是每千克多少元?
20.最近,山东淄博凭借烧烤爆红网络,无数“撸串”爱好者纷纷涌入淄博,甲、乙两个旅行团计划自驾游淄博.两个旅行团计划同一天出发,沿着不同的路线旅行至相同目的地.甲旅行团走A路线,全程1600千米,乙旅行团走B路线,全程2000千米,由于B路线高速公路较多,乙旅行团平均每天行驶路程是甲旅行团的倍,结果甲旅行团旅行天数比乙旅行团多1天.
(1)求甲、乙两个旅行团计划旅行多少天.
(2)甲、乙两旅行团开始各有20人参团,甲旅行团计划每人每天的平均花费为500元,而甲旅行团实际又加入了a人(a>0),经统计,甲旅行团每增加1人,每人每天的平均花费将减少20元;乙旅行团人数不变,每人每天的平均花费始终为400元.若两个旅行团旅行天数与各自原计划天数一致,且甲旅行团的总花费比乙旅行团总花费多16000元,求a的值.
21.学校计划利用一片空地建一个长方形自行车棚,其中一面靠墙,这堵墙的长度为8米,在与墙平行的一面开一个2米宽的门.已知现有的木板材料可新建的总长为26米,且全部用于除墙外其墙余三面木板外墙的修建.
(1)长方形车棚与墙垂直的一面至少多少米?
(2)如图按(1)问的最小长度建好车棚,为了方便学生通行,施工单位决定在车棚内修建几条等宽的小路(如图中内部阴影区域),使得停放自行车的空白面积为54平方米,那么小路的宽度是多少米?
第二章一元二次方程同步练习2022-2023学年九年级上册北师大版数学(答案)
一.选择题(共5小题)
1.下列方程中是一元二次方程是(  )
A. B.2x+6=7 C.x2+y2=5 D.3x2﹣5x+2=0
【答案】D
2.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是(  )
A.k≥﹣1且k≠0 B.k≥﹣1 C.k>﹣1 D.k>﹣1且k≠0
【答案】A
3.已知关于x的一元二次方程ax2+bx﹣2=0的一个根是﹣1,则a﹣b+3的值为(  )
A.1 B.3 C.5 D.7
【答案】C
4.有一个人患流感,经过两轮传染后共有64个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为(  )
A.1+2x=64 B.1+x2=64 C.1+x+x2=64 D.(1+x)2=64
【答案】D
5.若关于x的方程ax2+4x﹣2=0有两个不相等的实数根,且关于x的分式方程有正数解,则符合条件的整数a的个数是(  )
A.1 B.2 C.3 D.4
【答案】A
二.填空题(共11小题)
6.关于x的方程(k﹣1)x|k|+1﹣x+5=0是一元二次方程,则k= ﹣1 .
【答案】﹣1.
7.已知m,n是方程x2+2x﹣3=0的两个根,则=  .
【答案】.
8.若a,b分别是方程3x2﹣9x+5=0的两根,则a2﹣4a﹣b= ﹣ .
【答案】﹣.
9.已知实数m,n(m≠n)满足等式m2﹣2m﹣1=0,n2﹣2n﹣1=0,则的值是  ﹣4 .
【答案】﹣4.
10.已知实数满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则+的值是 7 .
【答案】见试题解答内容
11.关于x的一元二次方程x2+(2k+1)x+2k2﹣1=0的两个实数根x1,x2满足x12+x22=9,则k=  .
【答案】.
12.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1,1,2,它们除了数字不同外,其他都完全相同.小红从布袋中随机摸出一个小球,记下数字作为a的值,不放回,再从布袋中随机摸出一个小球,记下数字作为b的值,使得关于y的一元二次方程有实数根的概率是   .
【答案】.
13.代数式a2﹣2a+5的最小值为  4 .
【答案】4.
14.多项式a2﹣2ab+2b2﹣6b+27的最小值为 18 .
【答案】18.
15.若a,b为有理数,且2a2﹣2ab+b2﹣6a+9=0,则a+2b= 9 .
【答案】9.
16.已知△ABC的三边长为整数a,b,c,且满足a2+b2﹣6a﹣4b+13=0,则c为  2、3、4 .
【答案】2、3、4.
三.解答题(共5小题)
17.解方程:
(1)2x2﹣14=x2+2x+10;
(2)(x﹣1)(2x+3)=﹣1.
【答案】(1)x1=6,x2=﹣4;
(2)x1=,x2=.
18.计算:
(1)x2+2x+1=9;
(2)2x2﹣x﹣6=0.
【答案】(1)x1=2,x2=﹣4;
(2).
19.某水果店以相同的进价购进两批樱桃,第一批80千克,每千克16元出售;第二批60千克,每千克18元出售,两批车厘子全部售完,店主共获利960元.
(1)求樱桃的进价是每千克多少元?
(2)该水果店一相同的进价购进第三批樱桃若干,第一天将樱桃涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批樱桃,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时樱桃售完,店主销售第三批樱桃获得的利润为850元,求第二天樱桃的售价是每千克多少元?
【答案】(1)樱桃的进价是每千克10元;
(2)第二天樱桃的售价是每千克15元或19元.
20.最近,山东淄博凭借烧烤爆红网络,无数“撸串”爱好者纷纷涌入淄博,甲、乙两个旅行团计划自驾游淄博.两个旅行团计划同一天出发,沿着不同的路线旅行至相同目的地.甲旅行团走A路线,全程1600千米,乙旅行团走B路线,全程2000千米,由于B路线高速公路较多,乙旅行团平均每天行驶路程是甲旅行团的倍,结果甲旅行团旅行天数比乙旅行团多1天.
(1)求甲、乙两个旅行团计划旅行多少天.
(2)甲、乙两旅行团开始各有20人参团,甲旅行团计划每人每天的平均花费为500元,而甲旅行团实际又加入了a人(a>0),经统计,甲旅行团每增加1人,每人每天的平均花费将减少20元;乙旅行团人数不变,每人每天的平均花费始终为400元.若两个旅行团旅行天数与各自原计划天数一致,且甲旅行团的总花费比乙旅行团总花费多16000元,求a的值.
【答案】(1)甲旅行团计划旅行4天,乙旅行团计划旅行3天;
(2)a的值为5.
21.学校计划利用一片空地建一个长方形自行车棚,其中一面靠墙,这堵墙的长度为8米,在与墙平行的一面开一个2米宽的门.已知现有的木板材料可新建的总长为26米,且全部用于除墙外其墙余三面木板外墙的修建.
(1)长方形车棚与墙垂直的一面至少多少米?
(2)如图按(1)问的最小长度建好车棚,为了方便学生通行,施工单位决定在车棚内修建几条等宽的小路(如图中内部阴影区域),使得停放自行车的空白面积为54平方米,那么小路的宽度是多少米?
【答案】(1)长方形车棚与墙垂直的一面至少10米;
(2)小路的宽为1米.