中小学教育资源及组卷应用平台
真题卷06三角函数与解三角形(填空题)
一、填空题
1.(2022·全国·统考高考真题)已知中,点D在边BC上,.当取得最小值时, .
【答案】/
【分析】设,利用余弦定理表示出后,结合基本不等式即可得解.
【详解】[方法一]:余弦定理
设,
则在中,,
在中,,
所以
,
当且仅当即时,等号成立,
所以当取最小值时,.
故答案为:.
[方法二]:建系法
令 BD=t,以D为原点,OC为x轴,建立平面直角坐标系.
则C(2t,0),A(1,),B(-t,0)
[方法三]:余弦定理
设BD=x,CD=2x.由余弦定理得
,,
,,
令,则,
,
,
当且仅当,即时等号成立.
[方法四]:判别式法
设,则
在中,,
在中,,
所以,记,
则
由方程有解得:
即,解得:
所以,此时
所以当取最小值时,,即.
2.(2022·全国·统考高考真题)记函数的最小正周期为T,若,为的零点,则的最小值为 .
【答案】
【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而得解;
【详解】解: 因为,(,)
所以最小正周期,因为,
又,所以,即,
又为的零点,所以,解得,
因为,所以当时;
故答案为:
3.(2021·全国·统考高考真题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则 .
【答案】
【分析】由三角形面积公式可得,再结合余弦定理即可得解.
【详解】由题意,,
所以,
所以,解得(负值舍去).
故答案为:.
4.(2022·浙江·统考高考真题)若,则 , .
【答案】
【分析】先通过诱导公式变形,得到的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出,接下来再求.
【详解】[方法一]:利用辅助角公式处理
∵,∴,即,
即,令,,
则,∴,即,
∴ ,
则.
故答案为:;.
[方法二]:直接用同角三角函数关系式解方程
∵,∴,即,
又,将代入得,解得,
则.
故答案为:;.
5.(2021·全国·统考高考真题)已知函数的部分图像如图所示,则满足条件的最小正整数x为 .
【答案】2
【分析】先根据图象求出函数的解析式,再求出的值,然后求解三角不等式可得最小正整数或验证数值可得.
【详解】由图可知,即,所以;
由五点法可得,即;
所以.
因为,;
所以由可得或;
因为,所以,
方法一:结合图形可知,最小正整数应该满足,即,
解得,令,可得,
可得的最小正整数为2.
方法二:结合图形可知,最小正整数应该满足,又,符合题意,可得的最小正整数为2.
故答案为:2.
【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解,根据特殊点求解.
6.(2023·全国·统考高考真题)已知函数在区间有且仅有3个零点,则的取值范围是 .
【答案】
【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.
【详解】因为,所以,
令,则有3个根,
令,则有3个根,其中,
结合余弦函数的图像性质可得,故,
故答案为:.
7.(2021·全国·高考真题)已知函数的部分图像如图所示,则 .
【答案】
【分析】首先确定函数的解析式,然后求解的值即可.
【详解】由题意可得:,
当时,,
令可得:,
据此有:.
故答案为:.
【点睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:
(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.
8.(2020·全国·统考高考真题)关于函数f(x)=有如下四个命题:
①f(x)的图象关于y轴对称.
②f(x)的图象关于原点对称.
③f(x)的图象关于直线x=对称.
④f(x)的最小值为2.
其中所有真命题的序号是 .
【答案】②③
【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.
【详解】对于命题①,,,则,
所以,函数的图象不关于轴对称,命题①错误;
对于命题②,函数的定义域为,定义域关于原点对称,
,
所以,函数的图象关于原点对称,命题②正确;
对于命题③,,
,则,
所以,函数的图象关于直线对称,命题③正确;
对于命题④,当时,,则,
命题④错误.
故答案为:②③.
【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.
9.(2022·浙江·统考高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边,则该三角形的面积 .
【答案】.
【分析】根据题中所给的公式代值解出.
【详解】因为,所以.
故答案为:.
10.(2023·全国·统考高考真题)已知函数,如图A,B是直线与曲线的两个交点,若,则 .
【答案】
【分析】设,依题可得,,结合的解可得,,从而得到的值,再根据以及,即可得,进而求得.
【详解】设,由可得,
由可知,或,,由图可知,
,即,.
因为,所以,即,.
所以,
所以或,
又因为,所以,.
故答案为:.
【点睛】本题主要考查根据图象求出以及函数的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键.
11.(2023·全国·统考高考真题)若为偶函数,则 .
【答案】2
【分析】利用偶函数的性质得到,从而求得,再检验即可得解.
【详解】因为为偶函数,定义域为,
所以,即,
则,故,
此时,
所以,
又定义域为,故为偶函数,
所以.
故答案为:2.
12.(2019·全国·高考真题)的内角的对边分别为.若,则的面积为 .
【答案】
【分析】本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.
【详解】由余弦定理得,
所以,
即
解得(舍去)
所以,
【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.
13.(2020·海南·高考真题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为 cm2.
【答案】
【分析】利用求出圆弧所在圆的半径,结合扇形的面积公式求出扇形的面积,求出直角的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.
【详解】设,由题意,,所以,
因为,所以,
因为,所以,
因为与圆弧相切于点,所以,
即为等腰直角三角形;
在直角中,,,
因为,所以,
解得;
等腰直角的面积为;
扇形的面积,
所以阴影部分的面积为.
故答案为:.
【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.
14.(2020·全国·统考高考真题)若,则 .
【答案】
【分析】直接利用余弦的二倍角公式进行运算求解即可.
【详解】.
故答案为:.
【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.
15.(2019·全国·高考真题)函数的最小值为 .
【答案】.
【分析】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于的二次函数,从而得解.
【详解】,
,当时,,
故函数的最小值为.
【点睛】解答本题的过程中,部分考生易忽视的限制,而简单应用二次函数的性质,出现运算错误.
16.(2023·全国·统考高考真题)在中,,的角平分线交BC于D,则 .
【答案】
【分析】方法一:利用余弦定理求出,再根据等面积法求出;
方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.
【详解】
如图所示:记,
方法一:由余弦定理可得,,
因为,解得:,
由可得,
,
解得:.
故答案为:.
方法二:由余弦定理可得,,因为,解得:,
由正弦定理可得,,解得:,,
因为,所以,,
又,所以,即.
故答案为:.
【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.
17.(2018·全国·高考真题)△的内角的对边分别为,已知,,则△的面积为 .
【答案】.
【分析】方法一:由正弦定理可得,化简求得,利用余弦定理,结合题中的条件,可以得到,由为锐角,求得, ,利用三角形面积公式即可解出.
【详解】[方法一]:【最优解】边化角
因为,由正弦定理得,
因为,所以.又因为,
由余弦定理,可得,
所以,即为锐角,且,从而求得,
所以的面积为.
故答案为:.
[方法二]:角化边
因为,由正弦定理得,即,又,所以,.又因为,
由余弦定理,可得,
所以,即为锐角,且,从而求得,
所以的面积为.
故答案为:.
【整体点评】方法一:利用正弦定理边化角,求出,再结合余弦定理求出,即可求出面积,该法是本题的最优解;
方法二:利用正弦定理边化角,求出,再结合余弦定理求出,即可求出面积.
18.(2018·全国·高考真题)已知,,则 .
【答案】
【分析】方法一:将两式平方相加即可解出.
【详解】[方法一]:【最优解】
两式两边平方相加得,.
[方法二]: 利用方程思想直接解出
,两式两边平方相加得,则.
又或,所以.
[方法三]: 诱导公式+二倍角公式
由,可得,则或.
若,代入得,即.
若,代入得,与题设矛盾.
综上所述,.
[方法四]:平方关系+诱导公式
由,得.
又,,即,则.从而.
[方法五]:和差化积公式的应用
由已知得
,则或.
若,则,即.
当k为偶数时,,由,得,又,所以.
当k为奇数时,,得,这与已知矛盾.
若,则.则,得,这与已知矛盾.
综上所述,.
【整体点评】方法一:结合两角和的正弦公式,将两式两边平方相加解出,是该题的最优解;
方法二:通过平方关系利用方程思想直接求出四个三角函数值,进而解出;
方法三:利用诱导公式寻求角度之间的关系,从而解出;
方法四:基本原理同方法三,只是寻找角度关系的方式不同;
方法五:将两式相乘,利用和差化积公式找出角度关系,再一一验证即可解出,该法稍显麻烦.
19.(2023·全国·统考高考真题)若,则 .
【答案】
【分析】根据同角三角关系求,进而可得结果.
【详解】因为,则,
又因为,则,
且,解得或(舍去),
所以.
故答案为:.
20.(2020·江苏·统考高考真题)在△ABC中,D在边BC上,延长AD到P,使得AP=9,若(m为常数),则CD的长度是 .
【答案】或0
【分析】根据题设条件可设,结合与三点共线,可求得,再根据勾股定理求出,然后根据余弦定理即可求解.
【详解】∵三点共线,
∴可设,
∵,
∴,即,
若且,则三点共线,
∴,即,
∵,∴,
∵,,,
∴,
设,,则,.
∴根据余弦定理可得,,
∵,
∴,解得,
∴的长度为.
当时, ,重合,此时的长度为,
当时,,重合,此时,不合题意,舍去.
故答案为:0或.
【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出.
21.(2021·北京·统考高考真题)若点关于轴对称点为,写出的一个取值为 .
【答案】(满足即可)
【分析】根据在单位圆上,可得关于轴对称,得出求解.
【详解】与关于轴对称,
即关于轴对称,
,
则,
当时,可取的一个值为.
故答案为:(满足即可).
22.(2018·全国·高考真题)函数在的零点个数为 .
【答案】
【分析】方法一:求出的范围,再由函数值为零,得到的取值即得零点个数.
【详解】[方法一]:【最优解】
由题可知,或
解得,或故有3个零点.
故答案为:.
方法二:
令,即,解得,,分别令,得,所以函数在的零点的个数为3.
故答案为:.
【整体点评】方法一:先求出的范围,再根据余弦函数在该范围内的零点,从而解出,是该题的最优解;
方法二:先求出函数的所有零点,再根据题中范围限制,找出符合题意的零点.
23.(2023·全国·统考高考真题)已知点均在半径为2的球面上,是边长为3的等边三角形,平面,则 .
【答案】2
【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球以及求的性质运算求解.
【详解】如图,将三棱锥转化为直三棱柱,
设的外接圆圆心为,半径为,
则,可得,
设三棱锥的外接球球心为,连接,则,
因为,即,解得.
故答案为:2.
【点睛】方法点睛:多面体与球切、接问题的求解方法
(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解;
(2)若球面上四点P、A、B、C构成的三条线段PA、PB、PC两两垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解;
(3)正方体的内切球的直径为正方体的棱长;
(4)球和正方体的棱相切时,球的直径为正方体的面对角线长;
(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.
24.(2020·江苏·统考高考真题)已知 =,则的值是 .
【答案】
【分析】直接按照两角和正弦公式展开,再平方即得结果.
【详解】
故答案为:
【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.
25.(2019·全国·高考真题)的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B= .
【答案】.
【分析】先根据正弦定理把边化为角,结合角的范围可得.
【详解】由正弦定理,得.,得,即,故选D.
【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.
26.(2021·浙江·统考高考真题)我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为,小正方形的面积为,则 .
【答案】25
【分析】分别求得大正方形的面积和小正方形的面积,然后计算其比值即可.
【详解】由题意可得,大正方形的边长为:,
则其面积为:,
小正方形的面积:,
从而.
故答案为:25.
27.(2017·全国·高考真题)函数()的最大值是 .
【答案】1
【详解】化简三角函数的解析式,
可得
,
由,可得,
当时,函数取得最大值1.
28.(2018·江苏·高考真题)在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为 .
【答案】9
【分析】方法一:先根据角平分线性质和三角形面积公式得条件,再利用基本不等式即可解出.
【详解】[方法一]:【最优解】角平分线定义+三角形面积公式+基本不等式
由题意可知,,由角平分线定义和三角形面积公式得,化简得,即,
因此
当且仅当时取等号,则的最小值为.
故答案为:.
[方法二]: 角平分线性质+向量的数量积+基本不等式
由三角形内角平分线性质得向量式.
因为,所以,化简得,即,亦即,
所以,
当且仅当,即时取等号.
[方法三]:解析法+基本不等式
如图5,以B为坐标原点,所在直线为x轴建立平面直角坐标系.设,.因为A,D,C三点共线,则,即,则有,所以.
下同方法一.
[方法四]:角平分线定理+基本不等式
在中,,同理.根据内角平分线性质定理知,即,两边平方,并利用比例性质得,整理得,当时,可解得.当时,下同方法一.
[方法五]:正弦定理+基本不等式
在与中,由正弦定理得.
在中,由正弦定理得.
所以,由正弦定理得,即,下同方法一.
[方法六]: 相似+基本不等式
如图6,作,交的延长线于E.易得为正三角形,则.
由,得,即,从而.下同方法一.
【整体点评】方法一:利用角平分线定义和三角形面积公式建立等量关系,再根据基本不等式“1”的代换求出最小值,思路常规也简洁,是本题的最优解;
方法二:利用角平分线的性质构建向量的等量关系,再利用数量积得到的关系,最后利用基本不等式求出最值,关系构建过程运算量较大;
方法三:通过建立直角坐标系,由三点共线得等量关系,由基本不等式求最值;
方法四:通过解三角形和角平分线定理构建等式关系,再由基本不等式求最值,计算量较大;
方法五:多次使用正弦定理构建等量关系,再由基本不等式求最值,中间转换较多;
方法六:由平面几何知识中的相似得等量关系,再由基本不等式求最值,求解较为简单.
29.(2020·北京·统考高考真题)若函数的最大值为2,则常数的一个取值为 .
【答案】(均可)
【分析】根据两角和的正弦公式以及辅助角公式即可求得,可得,即可解出.
【详解】因为,
所以,解得,故可取.
故答案为:(均可).
【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.
30.(2018·全国·高考真题)已知,则 .
【答案】
【分析】方法一:利用两角差的正切公式展开,解方程可得.
【详解】[方法一]:直接使用两角差的正切公式展开
因为,所以,解之得.
故答案为:.
[方法二]:整体思想+两角和的正切公式
.
故答案为:.
[方法三]:换元法+两角和的正切公式
令,则,且.
.
故答案为:.
【整体点评】方法一:直接利用两角差的正切公式展开,解方程,思路直接;
方法二:利用整体思想利用两角和的正切公式求出;
方法三:通过换元法结合两角和的正切公式求出,是给值求值问题的常用解决方式.
31.(2018·北京·高考真题)设函数,若对任意的实数都成立,则的最小值为 .
【答案】
【分析】根据题意取最大值,根据余弦函数取最大值条件解得的表达式,进而确定其最小值.
【详解】因为对任意的实数x都成立,所以取最大值,
所以,
因为,所以当时,取最小值为.
【点睛】函数的性质
(1).
(2)周期
(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,
(4)由求增区间;由求减区间.
32.(2018·江苏·高考真题)已知函数的图象关于直线对称,则的值是 .
【答案】.
【详解】分析:由对称轴得,再根据限制范围求结果.
详解:由题意可得,所以,因为,所以
点睛:函数(A>0,ω>0)的性质:(1);
(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.
33.(2017·全国·高考真题)的内角的对边分别为,若,则 .
【答案】
【分析】根据正弦定理将边化为角,再根据两角和正弦公式以及诱导公式化简得cosB的值,即得B角.
【详解】由2bcosB=acosC+ccosA及正弦定理,得2sinBcosB=sinAcosC+sinCcosA.
∴2sinBcosB=sin(A+C).
又A+B+C=π,∴A+C=π-B.∴2sinBcosB=sin(π-B)=sinB.
又sinB≠0,∴cosB=.∴B=.
∵在△ABC中,acosC+ccosA=b,∴条件等式变为2bcosB=b,∴cosB=.
又0【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:
第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.
第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.
第三步:求结果.
34.(2017·全国·高考真题)函数的最大值为 .
【答案】
【分析】利用辅助角公式化简函数的解析式,通过正弦函数的有界性求解即可.
【详解】解:函数f(x)=2cosx+sinx(cosxsinx)sin(x+θ),其中tanθ=2,
可知函数的最大值为:.
故答案为.
【点睛】通过配角公式把三角函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用求最值.
35.(2016·全国·高考真题)已知θ是第四象限角,且sin(θ+)=,则tan(θ–)= .
【答案】
【分析】由题求得θ的范围,结合已知求得cos(θ),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ)的值.
【详解】解:∵θ是第四象限角,
∴,则,
又sin(θ),
∴cos(θ).
∴cos()=sin(θ),sin()=cos(θ).
则tan(θ)=﹣tan().
故答案为.
【点睛】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.
36.(2017·全国·高考真题)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=,c=3,则A= .
【答案】
【详解】由正弦定理,得,结合可得,则.
【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.其基本步骤是:
第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.
第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.
第三步:求结果.
37.(2016·全国·高考真题)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b= .
【答案】
【详解】试题分析:因为,且为三角形的内角,所以,,又因为,所以.
【考点】 正弦定理,两角和、差的三角函数公式
【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.
38.(2015·全国·高考真题)如图在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是 .
【答案】(,)
【详解】如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在△BCE中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得,即,解得=,平移AD ,当D与C重合时,AB最短,此时与AB交于F,在△BCF中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,,即,解得BF=,所以AB的取值范围为(,).
考点:正余弦定理;数形结合思想
39.(2013·全国·高考真题)设当时,函数取得最大值,则 .
【答案】;
【详解】f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cos φ=,当x-φ=2kπ+ (k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cos θ=-sin φ=-.
40.(2006·上海·高考真题)函数的最小正周期为
【答案】
【分析】化简即得解.
【详解】解:由题得,
所以函数的最小正周期为.
故答案为:
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
真题卷06三角函数与解三角形(填空题)
一、填空题
1.(2022·全国·统考高考真题)已知中,点D在边BC上,.当取得最小值时, .
2.(2022·全国·统考高考真题)记函数的最小正周期为T,若,为的零点,则的最小值为 .
3.(2021·全国·统考高考真题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则 .
4.(2022·浙江·统考高考真题)若,则 , .
5.(2021·全国·统考高考真题)已知函数的部分图像如图所示,则满足条件的最小正整数x为 .
6.(2023·全国·统考高考真题)已知函数在区间有且仅有3个零点,则的取值范围是 .
7.(2021·全国·高考真题)已知函数的部分图像如图所示,则 .
8.(2020·全国·统考高考真题)关于函数f(x)=有如下四个命题:
①f(x)的图象关于y轴对称.
②f(x)的图象关于原点对称.
③f(x)的图象关于直线x=对称.
④f(x)的最小值为2.
其中所有真命题的序号是 .
9.(2022·浙江·统考高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边,则该三角形的面积 .
10.(2023·全国·统考高考真题)已知函数,如图A,B是直线与曲线的两个交点,若,则 .
11.(2023·全国·统考高考真题)若为偶函数,则 .
12.(2019·全国·高考真题)的内角的对边分别为.若,则的面积为 .
13.(2020·海南·高考真题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为 cm2.
14.(2020·全国·统考高考真题)若,则 .
15.(2019·全国·高考真题)函数的最小值为 .
16.(2023·全国·统考高考真题)在中,,的角平分线交BC于D,则 .
17.(2018·全国·高考真题)△的内角的对边分别为,已知,,则△的面积为 .
18.(2018·全国·高考真题)已知,,则 .
19.(2023·全国·统考高考真题)若,则 .
20.(2020·江苏·统考高考真题)在△ABC中,D在边BC上,延长AD到P,使得AP=9,若(m为常数),则CD的长度是 .
21.(2021·北京·统考高考真题)若点关于轴对称点为,写出的一个取值为 .
22.(2018·全国·高考真题)函数在的零点个数为 .
23.(2023·全国·统考高考真题)已知点均在半径为2的球面上,是边长为3的等边三角形,平面,则 .
24.(2020·江苏·统考高考真题)已知 =,则的值是 .
25.(2019·全国·高考真题)的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B= .
26.(2021·浙江·统考高考真题)我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为,小正方形的面积为,则 .
27.(2017·全国·高考真题)函数()的最大值是 .
28.(2018·江苏·高考真题)在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为 .
29.(2020·北京·统考高考真题)若函数的最大值为2,则常数的一个取值为 .
30.(2018·全国·高考真题)已知,则 .
31.(2018·北京·高考真题)设函数,若对任意的实数都成立,则的最小值为 .
32.(2018·江苏·高考真题)已知函数的图象关于直线对称,则的值是 .
33.(2017·全国·高考真题)的内角的对边分别为,若,则 .
34.(2017·全国·高考真题)函数的最大值为 .
35.(2016·全国·高考真题)已知θ是第四象限角,且sin(θ+)=,则tan(θ–)= .
36.(2017·全国·高考真题)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=,c=3,则A= .
37.(2016·全国·高考真题)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b= .
38.(2015·全国·高考真题)如图在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是 .
39.(2013·全国·高考真题)设当时,函数取得最大值,则 .
40.(2006·上海·高考真题)函数的最小正周期为
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)