【考点全练】真题卷10 数列(填空题)-2024年新高考数学单选题、多选题、填空题训练(Word含解析)

文档属性

名称 【考点全练】真题卷10 数列(填空题)-2024年新高考数学单选题、多选题、填空题训练(Word含解析)
格式 zip
文件大小 1.2MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2023-08-09 14:22:13

文档简介

中小学教育资源及组卷应用平台
真题卷10 数列(填空题)
一、填空题
1.(2022·全国·统考高考真题)记为等差数列的前n项和.若,则公差 .
【答案】2
【分析】转化条件为,即可得解.
【详解】由可得,化简得,
即,解得.
故答案为:2.
2.(2020·海南·高考真题)将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为 .
【答案】
【分析】首先判断出数列与项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.
【详解】因为数列是以1为首项,以2为公差的等差数列,
数列是以1首项,以3为公差的等差数列,
所以这两个数列的公共项所构成的新数列是以1为首项,以6为公差的等差数列,
所以的前项和为,
故答案为:.
【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目.
3.(2022·北京·统考高考真题)已知数列各项均为正数,其前n项和满足.给出下列四个结论:
①的第2项小于3; ②为等比数列;
③为递减数列; ④中存在小于的项.
其中所有正确结论的序号是 .
【答案】①③④
【分析】推导出,求出、的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.
【详解】由题意可知,,,
当时,,可得;
当时,由可得,两式作差可得,
所以,,则,整理可得,
因为,解得,①对;
假设数列为等比数列,设其公比为,则,即,
所以,,可得,解得,不合乎题意,
故数列不是等比数列,②错;
当时,,可得,所以,数列为递减数列,③对;
假设对任意的,,则,
所以,,与假设矛盾,假设不成立,④对.
故答案为:①③④.
【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.
4.(2020·全国·统考高考真题)数列满足,前16项和为540,则 .
【答案】
【分析】对为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用表示,由偶数项递推公式得出偶数项的和,建立方程,求解即可得出结论.
【详解】,
当为奇数时,;当为偶数时,.
设数列的前项和为,

.
故答案为:.
【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.
5.(2020·全国·统考高考真题)记为等差数列的前n项和.若,则 .
【答案】
【分析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.
【详解】是等差数列,且,
设等差数列的公差
根据等差数列通项公式:
可得
即:
整理可得:
解得:
根据等差数列前项和公式:
可得:
.
故答案为:.
【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.
6.(2019·全国·高考真题)记Sn为等比数列{an}的前n项和.若,则S5= .
【答案】.
【分析】本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.
【详解】设等比数列的公比为,由已知,所以又,
所以所以.
【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.
7.(2019·全国·统考高考真题)记Sn为等差数列{an}的前n项和,,则 .
【答案】4.
【分析】根据已知求出和的关系,再结合等差数列前n项和公式求得结果.
【详解】因,所以,即,
所以.
【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.
8.(2018·全国·高考真题)记为数列的前项和,若,则 .
【答案】
【分析】首先根据题中所给的,类比着写出,两式相减,整理得到,从而确定出数列为等比数列,再令,结合的关系,求得,之后应用等比数列的求和公式求得的值.
【详解】根据,可得,
两式相减得,即,
当时,,解得,
所以数列是以-1为首项,以2为公比的等比数列,
所以,故答案是.
点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.
9.(2023·全国·统考高考真题)已知为等比数列,,,则 .
【答案】
【分析】根据等比数列公式对化简得,联立求出,最后得.
【详解】设的公比为,则,显然,
则,即,则,因为,则,
则,则,则,
故答案为:.
10.(2019·全国·高考真题)记为等差数列的前项和,若,则 .
【答案】100
【分析】根据题意可求出首项和公差,进而求得结果.
【详解】得
【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.
11.(2023·全国·统考高考真题)记为等比数列的前项和.若,则的公比为 .
【答案】
【分析】先分析,再由等比数列的前项和公式和平方差公式化简即可求出公比.
【详解】若,
则由得,则,不合题意.
所以.
当时,因为,
所以,
即,即,即,
解得.
故答案为:
12.(2020·江苏·统考高考真题)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和,则d+q的值是 .
【答案】
【分析】结合等差数列和等比数列前项和公式的特点,分别求得的公差和公比,由此求得.
【详解】设等差数列的公差为,等比数列的公比为,根据题意.
等差数列的前项和公式为,
等比数列的前项和公式为,
依题意,即,
通过对比系数可知,故.
故答案为:
【点睛】本小题主要考查等差数列和等比数列的前项和公式,属于中档题.
13.(2013·重庆·高考真题)已知是等差数列,,公差,为其前n项和,若,,成等比数列,则 .
【答案】
【分析】根据,,成等比数列以及列出关于的方程,解出,再根据计算答案即可
【详解】因为,,成等比数列
,即
解得 或(舍)
故答案为:
14.(2020·浙江·统考高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列 的前3项和是 .
【答案】
【分析】根据通项公式可求出数列的前三项,即可求出.
【详解】因为,所以.
即.
故答案为:.
【点睛】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.
15.(2017·全国·高考真题)(2017新课标全国II理科)等差数列的前项和为,,,则 .
【答案】
【详解】设等差数列的首项为,公差为,由题意有 ,解得 ,
数列的前n项和,
裂项可得,
所以.
点睛:等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.
16.(2015·全国·高考真题)设是数列的前项和,且,,则 .
【答案】
【详解】原式为,整理为: ,即,即数列是以-1为首项,-1为公差的等差的数列,所以 ,即 .
【点睛】这类型题使用的公式是 ,一般条件是 ,若是消 ,就需当 时构造 ,两式相减 ,再变形求解;若是消 ,就需在原式将 变形为: ,再利用递推求解通项公式.
17.(2019·江苏·高考真题)已知数列是等差数列,是其前n项和.若,则的值是 .
【答案】16.
【分析】由题意首先求得首项和公差,然后求解前8项和即可.
【详解】由题意可得:,
解得:,则.
【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建的方程组.
18.(2018·北京·高考真题)设是等差数列,且,,则的通项公式为 .
【答案】
【分析】先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可.
【详解】设等差数列的公差为,
【点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确:二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.
19.(2013·全国·高考真题)若数列{an}的前n项和为Sn=an+,则数列{an}的通项公式是an= .
【答案】;
【详解】试题分析:解:当n=1时,a1=S1=a1+,解得a1=1,当n≥2时,an=Sn-Sn-1=()-()=-整理可得an= an 1,即=-2,故数列{an}是以1为首项,-2为公比的等比数列,故an=1×(-2)n-1=(-2)n-1故答案为(-2)n-1.
考点:等比数列的通项公式.
20.(2017·全国·高考真题)设等比数列满足a1 + a2 = –1, a1 – a3 = –3,则a4 = .
【答案】-8
【详解】设等比数列的公比为,很明显,结合等比数列的通项公式和题意可得方程组:
,由可得:,代入①可得,
由等比数列的通项公式可得.
【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.
21.(2015·全国·高考真题)数列中为的前n项和,若,则 .
【答案】6
【详解】试题分析:由题意得,因为,即,所以数列构成首项,公比为的等比数列,则,解得.
考点:等比数列的概念及等比数列求和.
22.(2018·江苏·高考真题)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为 .
【答案】27
【分析】方法一:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.
【详解】[方法一]:【通性通法】【最优解】
设,则
由得,化简得,
,解得:,即.
所以只需研究是否有满足条件的解,
此时,,为等差数列项数,且.
由即,解得,所以
得满足条件的最小值为.
故答案为:.
[方法二]:列举法+二分法
与相比,B元素间隔大.因此利用列举法从中元素构成看,分别加了几个B中元素进行考虑.
1个:;
2个:;
3个:;
4个:;
5个:;
6个:.
发现当时,发生变号,以下用二分法查找:
,所以所求n应在22~29之间.
,所以所求n应在25~29之间.
,,不符合条件;,,符合条件.
因为,而,
故答案为:.
【整体点评】方法一:先由求和公式寻找不等式成立的充分条件,即当第项的值大于等于时,不等式成立,再寻找第项的值在与之间时是否也可以有满足题意的解,从而解出,是本题的通性通法,也是最优解;
方法二:根据两个集合的特征,一一列举集合中的元素,并研究集合中元素的和与的变化规律,从而找出可能满足不等式的解,再由二分法验证解出,该法计算较为麻烦.
试卷第2页,共3页
试卷第1页,共1页
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
真题卷10 数列(填空题)
一、填空题
1.(2022·全国·统考高考真题)记为等差数列的前n项和.若,则公差 .
2.(2020·海南·高考真题)将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为 .
3.(2022·北京·统考高考真题)已知数列各项均为正数,其前n项和满足.给出下列四个结论:
①的第2项小于3; ②为等比数列;
③为递减数列; ④中存在小于的项.
其中所有正确结论的序号是 .
4.(2020·全国·统考高考真题)数列满足,前16项和为540,则 .
5.(2020·全国·统考高考真题)记为等差数列的前n项和.若,则 .
6.(2019·全国·高考真题)记Sn为等比数列{an}的前n项和.若,则S5= .
7.(2019·全国·统考高考真题)记Sn为等差数列{an}的前n项和,,则 .
8.(2018·全国·高考真题)记为数列的前项和,若,则 .
9.(2023·全国·统考高考真题)已知为等比数列,,,则 .
10.(2019·全国·高考真题)记为等差数列的前项和,若,则 .
11.(2023·全国·统考高考真题)记为等比数列的前项和.若,则的公比为 .
12.(2020·江苏·统考高考真题)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和,则d+q的值是 .
13.(2013·重庆·高考真题)已知是等差数列,,公差,为其前n项和,若,,成等比数列,则 .
14.(2020·浙江·统考高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列 的前3项和是 .
15.(2017·全国·高考真题)(2017新课标全国II理科)等差数列的前项和为,,,则 .
16.(2015·全国·高考真题)设是数列的前项和,且,,则 .
17.(2019·江苏·高考真题)已知数列是等差数列,是其前n项和.若,则的值是 .
18.(2018·北京·高考真题)设是等差数列,且,,则的通项公式为 .
19.(2013·全国·高考真题)若数列{an}的前n项和为Sn=an+,则数列{an}的通项公式是an= .
20.(2017·全国·高考真题)设等比数列满足a1 + a2 = –1, a1 – a3 = –3,则a4 = .
21.(2015·全国·高考真题)数列中为的前n项和,若,则 .
22.(2018·江苏·高考真题)已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为 .
试卷第2页,共3页
试卷第1页,共1页
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录