八年级数学上册试题 15.4角的平分线同步练习 -沪科版(含答案)

文档属性

名称 八年级数学上册试题 15.4角的平分线同步练习 -沪科版(含答案)
格式 docx
文件大小 357.7KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2023-08-10 19:33:35

图片预览

文档简介

15.4角的平分线
第一课时
一、单选题
1.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).
A.35° B.70°
C.110° D.145°
2.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是(  )
A.6 B.8 C.10 D.12
3.如图所示,OC,OD分别是∠AOB,∠BOC的平分线,且∠COD=26°,则∠AOB的度数为(  )
A.96° B.104° C.112° D.114°
4.如图,BO、CO是∠ABC、∠ACB的平分线,∠BOC=120°,则∠A=( )
A.60° B.120° C.110° D.40°
5.如图,在 ABCD中,已知,,AE平分交BC于点E,则CE长是  
A.8cm B.5cm C.9cm D.4cm
二、填空题
6.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是_____.
7如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=_____.
8.如图,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 内的射线,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,当∠BOC 在∠AOD 内绕着点 O以 3°/秒的速度逆时针旋转 t 秒时,当∠AOM:∠DON=3:4 时,则 t=____________.
9.如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.
三、解答题
10.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°,
(1)若∠BOE=70°,求∠AOF的度数;
(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.
11.如图,已知点E在AB上,CE平分∠ACD,∠ACE=∠AEC.求证:AB∥CD.
12.已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.∠1=∠3,求证:AB∥DC.
证明:∵∠ABC=∠ADC ( )
∴( )
∵BF、DE分别平分∠ABC与∠ADC ( )
∴ ( )
∴∠______=∠______ ( )
∵∠1=∠3( )
∴∠2=∠______ (等量代换)
∴____∥____ ( )
13.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,
(1)在图1中,若∠AOC=40°,则∠BOC= °,∠NOB= °.
(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系( 必须写出推理的主要过程,但每一步后面不必写出理由);
(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.
14.已知:O是直线AB上的一点,是直角,OE平分.
(1)如图1.若.求的度数;
(2)在图1中,,直接写出的度数(用含a的代数式表示);
(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究和的度数之间的关系.写出你的结论,并说明理由.
第二课时
一、单选题
1.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是( )
A.22° B.46° C.68° D.78°
2.如图,已知在四边形中,,平分,,,,则四边形的面积是( )
A.24 B.30 C.36 D.42
3.已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,则∠EOF的度数是(  )
A.45° B.15° C.30°或60° D.45°或15°
4.如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为(  ).
A.4 B.3 C.2 D.1
5.如图,直线AB、CD、EF相交于点O,其中AB⊥CD,∠1:∠2=3:6,则∠EOD=( )
A.120° B.130° C.60° D.150°
二、填空题
6.已知, ,射线OM是平分线,射线ON是 平分线,则________ .
7.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE//BC,分别交AB,AC于点D,E,若AB=4,AC=3,则△ADE的周长是_______________。
8.如图,平分,则______.
9.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:
①EF=BE+CF;
②∠BOC=90°+∠A;
③点O到△ABC各边的距离相等;
④设OD=m,AE+AF=n,则.
其中正确的结论是____.(填序号)
三、解答题
10.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若点C恰好是AB中点,则DE=_____cm;
(2)若AC=4cm,求DE的长;
(3)试利用“字母代替数”的方法,设AC="a" cm请说明不论a取何值(a不超过14cm),DE的长不变;
(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.
11.如图,∠BOC=2∠AOC,OD是∠AOB的平分线,且∠COD=18°,求∠AOC的度数.
12.如图,AB与CD相交于O,OE平分∠AOC,OF⊥AB于O,OG⊥OE于O,若∠BOD=40°,求∠AOE和∠FOG的度数.
13.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF,
(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)
(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?
14.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).
(1)当t为何值时,射线OC与OD重合;
(2)当t为何值时,∠COD=90°;
(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.
第一课时答案
一、单选题
C.B.B.A.B.
二、填空题
6.42
7.55°
8.
9.45
三、解答题
10.(1)∵OE平分∠BOC,

∴ 又

(2)∵∠BOD:∠BOE=1:2,OE平分∠BOC,
∴∠BOD:∠BOE:∠EOC=1:2:2,


又∵

11.平分,

又,


12.
证明:∵∠ABC=∠ADC (已知),
∴(等式的性质).
∵BF、DE分别平分∠ABC与∠ADC (已知),
∴ (角平分线的定义),
∴∠1=∠2(等量代换).
∵∠1=∠3( 已知),
∴∠2=∠3(等量代换),
∴AB∥DC (内错角相等,两直线平行).
13.
(1)如图1,
∵∠AOC与∠BOC互余,
∴∠AOC+∠BOC=90°,
∵∠AOC=40°,
∴∠BOC=50°,
∵OC平分∠MOB,
∴∠MOC=∠BOC=50°,
∴∠BOM=100°,
∵∠MON=40°,
∴∠BON=∠MON-∠BOM=140°-100°=40°,
(2)β=2α-40°,理由是:
如图1,∵∠AOC=α,
∴∠BOC=90°-α,
∵OC平分∠MOB,
∴∠MOB=2∠BOC=2(90°-α)=180°-2α,
又∵∠MON=∠BOM+∠BON,
∴140°=180°-2α+β,即β=2α-40°;
(3)不成立,此时此时α与β之间的数量关系为:2α+β=40°,
理由是:如图2,
∵∠AOC=α,∠NOB=β,
∴∠BOC=90°-α,
∵OC平分∠MOB,
∴∠MOB=2∠BOC=2(90°-α)=180°-2α,
∵∠BOM=∠MON+∠BON,
∴180°-2α=140°+β,即2α+β=40°,
答:不成立,此时此时α与β之间的数量关系为:2α+β=40.
14.
(1)∵是直角,,


∵OE平分,


(2)是直角,,


∵OE平分,


(3),
理由是:,OE平分,




即.
第二课时答案
一、单选题
C.B.A.B.D
二、填空题
6.60°或20°
7.7
8.145°
9.①②③
三、解答题
10.解:(1)∵AB=12cm,C点为AB的中点,∴AC=BC=6cm.
∵点D、E分别是AC和BC的中点,∴CD=CE=3cm,∴DE=6cm.
(2)∵AB=12cm,AC=4cm,∴BC=8cm.
∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm;
(3)设AC=acm.∵点D、E分别是AC和BC的中点,∴DE=CD+CE=AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变;
(4)∵OD、OE分别平分∠AOC和∠BOC,∴∠DOE=∠DOC+∠COE=∠AOB.
∵∠AOB=120°,∴∠DOE=60°,∴∠DOE的度数与射线OC的位置无关.
11.
∵∠BOC=2∠AOC,∠BOA=∠BOC+∠AOC,
∴∠BOA=3∠AOC,
∵OD是∠AOB的平分线,
∴∠BOA=2∠AOD,
∵∠AOD=∠AOC+∠COD,∠COD=18°,
∴2(∠AOC+18°)=3∠AOC,
∴∠AOC=36°.
12.∵∠AOC与∠BOD是对顶角,
∴∠AOC=∠BOD=40°,
∵OE平分∠AOC,
∴∠AOE=∠AOC=20°,
∵OF⊥AB,OG⊥OE,
∴∠AOF=∠EOG=90°,
即∠AOG与∠FOG互余,∠AOG与∠AOE互余,
∴∠FOG=∠AOE=20°.
13.
(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;
又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);
而∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;
(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;
又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);
而∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α;
(3)从(1)(2)的结果中能看出∠AOE=2∠BOD.
14.
解:(1)由题意得,20t=5t+120°,解得t=8,
即当t=8分钟时,射线OC与OD重合;
(2)当OC位于OD的右边时:∠BOD+120°=∠AOC+90°,则可得5t+120°=20t+90°,解得t=2分钟;
当OC位于OD左边时:∠AOC-90°-120°=∠BOD,则可得20t-90°-120°=5t,解得t=14分钟;
故当t=2或14分钟时,∠COD=90°;
(3)存在.
当OB为角平分线时:120°-∠AOC=∠BOD,则可得120°-20t=5t,解得t=4.8分钟;
当OC为角平分线时:∠AOC-120°=∠BOD,则可得20t-120°=×5t,解得t=分钟;
当OD为角平分线时:∠AOC-120°=2∠BOD,则可得20t -120°=2×5t,解得t=12分钟.
故当t=4.8或或12分钟时,射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线.