课件中心精品资料 www. 找精品资料 到课件中心
7.1.1 三角形的边
教学目标
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.毛
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.
4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.
重点、难点
重点:
1.对三角形有关概念的了解,能用符号语言表示三条形.
2.能从图中识别三角形.
3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.
难点:
1.在具体的图形中不重复,且不遗漏地识别所有三角形.
2.用三角形三边不等关系判定三条线段可否组成三角形.
教学过程
一、看一看
1.投影:图形见章前P68-69图.
教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.
学生活动:(1)交流在日常生活中所看到的三角形.
(2)选派代表说明三角形的存在于我们的生活之中.
2.板书:在黑板上老师画出以下几个图形.
(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)
(2)观察发现,以上的图,哪些是三角形
(3)描述三角形的特点:
板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.
教师提问:上述对三角形的描述中你认为有几个部分要引起重视.
学生回答:
a.不在一直线上的三条线段.
b.首尾顺次相接.
二、读一读
指导学生阅读课本P71,第一部分至思考,一段课文,并回答以下问题:
(1)什么叫三角形
(2)三角形有几条边 有几个内角 有几个顶点
(3)三角形ABC用符号表示________.
(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.
三、做一做
画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择 各条路线的长一样吗
同学们在画图计算的过程中,展示议论,并指定回答以上问题:
(1)小虫从B出发沿三角形的边爬到C有如下几条路线.
a.从B→C
b.从B→A→C
(2)从B沿边BC到C的路线长为BC的长.
从B沿边BA到A,从A沿边C到C的路线长为BA+AC.
经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.
四、议一议
1.在用一个三角形中,任意两边之和与第三边有什么关系
2.在同一个三角形中,任意两边之差与第三边有什么关系
3.三角形三边有怎样的不等关系
通过动手实验同学们可以得到哪些结论
三角形的任意两边之和大于第三边;任意两边之差小于第三边.
五、想一想
三角形按边分可以,分成几类 按角分呢
(1)三角形按边分类如下:
三角形 不等三角形
等腰三角形 底和腰不等的等腰三角形
等边三角形
(2)三角形按角分类如下:
三角形 直角三角形
斜三角形 锐角三角形
钝角三角形
六、练一练
有三根木棒长分别为3cm、6cm和2cm,用这木棒能否围成一个三角形
分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.
(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和8cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.
错导:∵3cm+6cm>2cm
∴用3cm、6cm、2cm的木棒可以构成一个三角形.
错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.
七、忆一忆
今天我们学了哪些内容:
1.三角形的有关概念(边、角、顶点)
2.会用符号表示一个三角形.
3.通过实践了解三角形的三边不等关系.
八、作业
1.课本P71练习1.2,P75练习7.1 1.2.
2.补充:如图,线段、相交于点,能否确定与的大小,并加以说明.毛
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.3 多边形及其内角和同步练习
(检测时间50分钟 满分100分)
班级________ 姓名_________ 得分______
一、选择题:(每小题3分,共24分)
1.一个多边形的外角中,钝角的个数不可能是( )毛
A.1个 B.2个 C.3个 D.4个
2.不能作为正多边形的内角的度数的是( )
A.120° B.(128)° C.144° D.145°
3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )
A.2:1 B.1:1 C.5:2 D.5:4
4.一个多边形的内角中,锐角的个数最多有( )
A.3个 B.4个 C.5个 D.6个
5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )
A.都是钝角; B.都是锐角
C.是一个锐角、一个钝角 D.是一个锐角、一个直角
6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )
A.十三边形 B.十二边形 C.十一边形 D.十边形
7.若一个多边形共有十四条对角线,则它是( )
A.六边形 B.七边形 C.八边形 D.九边形
8.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )
A.90° B.105° C.130° D.120°
二、填空题:(每小题3分,共15分)
1.多边形的内角中,最多有________个直角.
2.从n边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形.
3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________.
4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_________.
5.每个内角都为144°的多边形为_________边形.
三、基础训练:(每小题12分,共24分)
1.如图所示,用火柴杆摆出一系列
三角形图案,按这种方式摆下去,
当摆到20层(n=20)时,需要多少
根火柴
2.一个多边形的每一个外角都等于24°,求这个多边形的边数.
四、提高训练:(共15分)
一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.
五、探索发现:(共18分)
从n边形的一个顶点出发,最多可以引多少条条对角线 请你总结一下n边形共有多少条对角线.
六、中考题与竞赛题:(共4分)
(湖南)若一个多边形的内角和等于1080°,则这个多边形的边数是( )
A.9 B.8 C.7 D.6
答案:
一、1.D 2.D 3.D 4.A 5.C 6.A 7.B 8.C
二、1.4 2.(n-3) (n-2) 3.9 4.11 5.十
三、1.630根 2.15
四、边数为,n=1或2.
五、(n-3) 条
六、B.毛
课件中心精品资料 www. 版权所有@课件中心 第 2 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.1.3三角形的稳定性
教学目标:
通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用
重点:了解三角形稳定性在生产、生活是实际应用
难点:准确使用三角形稳定性与生产生活之中
课前准备:小木条8个,小钉若干
教学过程:
一、看一看,想一想
课本P73投影出来
二、做一做
1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?
2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?
3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?
三、议一议
从上面实验过程你能得出什么结论?与同伴交流。
三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性。
四、三角形稳定性应用举例、四边形没有稳定性的应用举例
五、练一练
课本P74练习
作业:课本P75――5,9
课件中心精品资料 www. 版权所有@课件中心 第 2 页 共 2 页课件中心精品资料 www. 找精品资料 到课件中心
三角形复习课
教学目标:
知识与技能:1、复习三角形的分类。
2、复习三角形的有关概念。
3、巩固三角形三边关系的运用。
4、三角形高、中线和角平分线的作法回顾及性质的简单运用。
过程与方法:师生活动是采用教师提问、学生回答的方式,教师不适时机地加以启发。
情感态度与价值观:通过复习进一步树立学生学好数学的信心和决心,在学习过程中进一步锻炼学生不畏困难,敢于迎难而上的意志品质。
教学重点:1、三角形三边关系的运用;
2、三角形三条重要线段性质的运用。
教学难点:三边关系、三条重要线段性质的运用及几何语言表达。
教 具:多媒体
教学过程:
活动1:提问:你知道有哪些类型的三角形?
(师生共同归纳)
活动2:复习三角形中有关基本概念
练习:(1)图中有几个三角形?用符号分别表示这些三角形.
(2)AB可以是哪些三角形的边?
(3)说出△ABC中的三个内角.
活动3:思考:三角形的三条边有怎样的数量关系?
练习:1、下列长度的三条线段能否组成三角形?为什么?
(1)3,4,8(2)5,6,10(3)5,6,11。
2、已知三角形的两边长为3、4,则第三边的取值范围
是:
3、已知等腰三角形的两边长为2、8,则第三边的长为
活动4:(一)复习三角形三条重要的线段:
1、 三角形的高
过程实施:(1)结合锐角三角形复习三角形高的画法(定义)
(2)让学生画出另外两条边上的高并归纳此三角形中三条高的位置关系。
(3)让学生画出直角三角形和钝角三角形三条边上的高,并归纳三角形中三条高的位置关系及高交点与三角形的位置关系。
(4)符号语言表达。
2、三角形的中线
过程实施:(1)复习三角形中线的画法(定义)
(2)让学生画出另外两条边上的中线
(3)归纳三条中线的位置关系及三条中线交点与三角形的位置关系。
(4)符号语言表达。
3、三角形的角平分线
过程实施:(1)复习三角形线角平分线的画法(定义)
(2)让学生画出另外两条角平分线
(3)归纳三条角平分线的位置关系及三条角平分线交点与三角形的位置关系。
(4)符号语言表达。
(5)提问:三条重要线段的联系与区别?(都是线段;线段与三角形的位置关系;都交于一点;交点的位置。)
(二)练一练
1、下列各个图形中,哪一个图形中AD是△ABC 的高( )
A B C D
2.如图,在ΔABC中,AE是中线,AD是角平分线,AF是高。填空:
(1)BE= = ;
(2)∠BAD= =
(3)∠AFB= =90°;
(4)SΔABC= ;
(5)若 ,则
3、已知等腰三角形的一个角为40度,求:一腰上的高与另一腰的夹角。
4、如图:BD是△ABC的角平分线,DE//BC,且
∠ABC=600
(1)求: ∠EDB的度数;
(2)求证:BE=ED。
5、如图:AD是△ABC的中线,AB=3cm,AC=
5cm.求△ABD与△ACD的周长差。
6、△ABC中,AD是边BC上的高且AD=3, AB=5,AC=6。求第三边BC的长。
活动5:学了本节课你有什么收获?
布置作业:
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.4课题学习:镶嵌
一、教学目标
1.会用正多边形无缝隙、不重叠地覆盖平面。
2.让学生在应用已有的数学知识和能力,探索和解决镶嵌问题的过程中,感受数学知识的价值,增强应用意识,获得各种体验。
二、教学活动的建议
探究性活动是一种心得学习方式,它不是老师讲授、学生听讲的学习方式,而是学生自己应用已有的数学知识和能力,去探索研究生活中有趣而富有挑战问题的活动过程。
建议本节教学活动采用以下形式:
(1) (1) 学生自己提出研究课题;
(2) (2) 学生自己设计制订活动方案;
(2) (3) 操作实践;
(2) (4) 回顾和总结。
教学活动中,教师提供必要的指点和帮助。引导学生对探究性活动进行反思,不仅关注学生是否能用已有的知识去探究和解决问题,并更多地关注学生自主探究、与他人合作的愿望和能力。
三、关于镶嵌
1. 1. 镶嵌,作为数学学习的一项探究性活动,主要有以下两个方面的原因:
(1) 如果用“数学的眼光”观察事物,那么用正方形的地砖铺地,就是“正方形”这种几何图形可以无缝隙、不重叠地拼合。
(2) “几何“中研究图形性质时,也常常要把图形拼合。比如,两个全等的直角三角形可以拼合成一个等腰三角形,或一个矩形,或一个平行四边形;又如,六个全等的等边三角形可以拼合成一个正六边形,四个全等的等边三角形可以拼合成一个较大的等边三角形等。
1. 2. 各种平面图形能作“平面镶嵌”的必备条件,是图形拼合后同一个顶点的若干个角的和恰好等于360°。
(1)用同一种正多边形镶嵌,只要正多边形内角的度数整除360°,这种正多边形就能作平面镶嵌。比如正三角形、正方形、正六边形能作平面镶嵌,而正五边形、正七边形、正八边形、正九边形、……的内角的度数都不能整除360°,所以这些正多边形都不能镶嵌。
(2)用两种或三种正多边形镶嵌,详见163~166页内容。
(3)用一种任意的凸多边形镶嵌。
从正多边形镶嵌中可以知道:只要研究任意的三角形、四边形、六边形能否作平面镶嵌,而不必考虑其他多边形能否镶嵌(这是因为:假如这类多边形能作镶嵌,那么这类正多边形必能作镶嵌,这与上面研究的结论矛盾)
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 5 页课件中心精品资料 www. 找精品资料 到课件中心
7.2.1 三角形的内角同步练习
(检测时间50分钟 满分100分)
班级________ 姓名_________ 得分______
一、选择题:(每小题3分,共21分)
1.如果三角形的三个内角的度数比是2:3:4,则它是( )毛
A.锐角三角形 B.钝角三角形; C.直角三角形 D.钝角或直角三角形
2.下列说法正确的是( )
A.三角形的内角中最多有一个锐角; B.三角形的内角中最多有两个锐角
C.三角形的内角中最多有一个直角; D.三角形的内角都大于60°
3.已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为( )
A.60°,90°,75° B.48°,72°,60°
C.48°,32°,38° D.40°,50°,90°
4.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )
A.100° B.120° C.140° D.160°
5.已知三角形两个内角的差等于第三个内角,则它是( )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形
6.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )
A.有两个锐角、一个钝角 B.有两个钝角、一个锐角
C.至少有两个钝角 D.三个都可能是锐角
7.在△ABC中,∠A=∠B=∠C,则此三角形是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
二、填空题:(每小题3分,共15分)
1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.
2.在△ABC中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.
3.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______.
4.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=_______度.
5.如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC的度数为________.
三、基础训练:(每小题15分,共30分)
1.如图所示,在△ABC中,AD⊥BC于D,AE平分∠BAC(∠C>∠B),
试说明∠EAD=(∠C-∠B).
2.在△ABC中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.
四、提高训练:(共15分)
如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P的度数.
五、探索发现:(共15分)
如图所示,将△ABC沿EF折叠,使点C落到点C′处,试探求∠1,∠2与∠C的关系.
六、中考题与竞赛题:(共4分)
(天津)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,
∠AFD=158°, 则∠EDF=________度.
答案:
一、1.A 2.C 3.B 4.B 5.C 6.C 7.B
二、1.40° 2.直角 钝角 3.36°或90° 4.84 5.80°
三、1.解:∵AD⊥BC,
∴∠BDA=90°,
∴∠BAD=90°-∠B,
又∵AE 平分∠BAC,
∴∠BAE=∠BAC=(180°-∠B-∠C),
∴∠EAD=∠BAD-∠BAE
=90°-∠B-(180°-∠B-∠C)
=90°-∠B-90°+∠B+∠C
=∠C-∠B
=(∠C-∠B).
2.∠A=50°,∠B=55°,∠C=75.
四、∠P=30°
五、解:∵∠1=180°-2∠CEF,∠2=180°-2∠CFE,
∴∠1+∠2=360°-2(∠CEF+ ∠CFE)
=360°-2(180°-∠C)
=360°-360°+2∠C=2∠C.
六、68.毛
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.1.2 三角形的高、中线与角平分线
教学目标
1.经历析纸,画图等实践过程认识三角形的高、中线与角平分线.毛
2.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于点.
重点、难点
1.重点:
(1)了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.
(2)了解三角形的三条高、三条中线与三条角平分线分别交于一点.
2.难点:
(1)三角形平分线与角平分线的区别,三角形的高与垂线的区别.
(2)钝角三角形高的画法.
(3)不同的三角形三条高的位置关系.
教学过程
一、看一看
把下面图表投影出来:
三角形的重要线段 意义 图形 表示法
三角形的高线 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段 1.AD是△ABC的BC上的高线.2.AD⊥BC于D.3.∠ADB=∠ADC=90°.
三角形的中线 三角形中,连结一个顶点和它对边中的线段 1.AE是△ABC的BC上的中线.2.BE=EC=BC.
三角形的角平分线 三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 1.AM是△ABC的∠BAC的平分线.2.∠1=∠2=∠BAC.
1.指导学生阅读课本P71-72的课文.
2.仔细观察投影表中的内容,并回答下面问题.
(1)什么叫三角形的高 三角形的高与垂线有何区别和联系 三角形的高是从三角形的一个顶点向它对边所在的直线作垂线,顶点和垂足之间的线段,而从三角形一个顶点向它对边所在的直线作垂线这条垂线是直线.
(2)什么叫三角形的中线 连结两点的线段与过两点的直线有何区别和联系
三角形的中线是连结一个顶点和它对边的中点的线段, 而过两点的直线有着本质的不同,一个代表的是线段,另一个却是直线.
(3)什么叫三角形的角平分线 三角形的角平分线与角平分线有何区别和联系
三角形的角平分线是三角形的一个内角平分线与它的对边相交, 这个角顶点与交点之间的线段,而角平分线指的是一条射线.
3.三角形的高、中线和角平分线是代表线段还是代表射线或直线
三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.
二、做一做
1.让学生在练习本上画出三角形,并在这个三角形中画出它的三条高.( 如果他们所画的是锐角三角形,接着提出在直角三角形的三条高在哪里 钝角三角形的三条高在那里 )观察这三条高所在的直线的位置有何关系
三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.
2.让学生在练习本上画三角形,并在这个三角形中画出它的三条中线.( 如果他们所画的是锐角三角形,接着让他们画出直角三角形和钝角三角形,看看这些三角形的中线在哪里) 观察这三条中线的位置有何关系
三角形的三条中线都在三角形内部,它们交于一点,这个交点在三角形内.
3.让学生在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系
无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在三角形内,并且交于一点.
三、议一议
通过以上观察和操作你发现了哪些规律,并加以总结且与同伴交流.
四、练习
1.课本P72,练习1.2.
2.画钝角三角形的三条高.
五、作业
1.P75 习题7.1 3.4.
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 2 页课件中心精品资料 www. 找精品资料 到课件中心
7.2.1三角形的内角
教学目标
1 经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理
2 能应用三角形内角和定理解决一些简单的实际问题
重点:三角形内角和定理
难点:三角形内角和定理的推理的过程
课前准备
每个学生准备好二个由硬纸片剪出的三角形
教学过程
1、 做一做
1在所准备的三角形硬纸片上标出三个内角的编码
2 让学生动手把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出的度数,可得到
3 剪下,按图(2)拼在一起,从而还可得到
图2
4 把和剪下按图(3)拼在一起,用量角器量一量的度数,会得到什么结果。
二想一想
如果我们不用剪、拼办法,可不可以用推理论证的方法来说明上面的结论的正确性呢?
已知,说明,你有几种方法?结合图(1)、图(2)、图(3)
能不能用图(4)也可以说明这个结论成立
2、 例题如图,C岛在A岛的北偏东方向,B岛在A岛的北偏东方向,C岛在B岛的北偏西方向,从C岛看A、B两岛的视角是多少度?
练习:课本P80,练习1,2
作业:P81
1,2,3,4,5
补充练习
1 三角形中最大的角是,那么这个三角形是锐角三角形( )
2 一个三角形中最多只有一个钝角或直角( )
3 一个等腰三角形一定是锐角三角形( )
4 一个三角形最少有一个角不大于( )
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 2 页课件中心精品资料 www. 找精品资料 到课件中心
7.3.2 多边形的内角和
[教学目标]
1.使学生了解多边形的内角、外角等概念.
2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.
[教学重点、难点]
1.重点:
(1)多边形的内角和公式.
(2)多边形的外角和公式.
2.难点:多边形的内角和定理的推导.
[教学过程]
一、探究
1.我们知道三角形的内角和为180°.
2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.
3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?
画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.
从中你得到什么结论?
同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.
二、思考几个问题
1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?
2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?
3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?
综上所述,你能得到多边形内角和公式吗?
设多边形的边数为n,则
n边形的内角和等于(n一2)·180°.
想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?
由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)
分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.
如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.
分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.
∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°
用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.
三、例题
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?
已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.
分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.
解:如图,四边形ABCD中,∠A+∠C=180°。
∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,
∴∠B+∠D= 360°-(∠A+∠C)=180°
这就是说:如果四边形一组对角互补,那么另一组对角也互补.
例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.
求:∠1+∠2+∠3+∠4+∠5+∠6的值.
分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.
这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.
解:∵六边形的任何一个外角加上它相邻的内角和为180°.
∴六边形的六个外角加上各自相邻内角的总和为6×180°.
由于六边形的内角和为(6—2)×180°=720°
∴它的外角和为6×180°一720°=360°
如果把六边形横成n边形.(n为不小于3的正整数)
同样也可以得到其外角和等于360°.即
多边形的外角和等于360°.
所以我们说多边形的外角和与它的边数无关.
对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.
如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.
四、课堂练习
课本P89练习1、2、3题.
P90第2、3题
五、课堂小结
引导学生总结本节课主要内容.
六、课后作业
课本P90第4、5、6题.
备选题:
一、判断题.
1.当多边形边数增加时,它的内角和也随着增加.( )
2.当多边形边数增加时.它的外角和也随着增加.( )
3.三角形的外角和与一多边形的外角和相等.( )
4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.( )
5.四边形的四个内角至少有一个角不小于直角.( )
二、填空题.
1.一个多边形的每一个外角都等于30°,则这个多边形为 边形.
2.一个多边形的每个内角都等于135°,则这个多边形为 边形.
3.内角和等于外角和的多边形是 边形.
4.内角和为1440°的多边形是 .
5.一个多边形的内角的度数从小到大排列时,恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是 边形.
6.若多边形内角和等于外角和的3倍,则这个多边形是 边形.
7.五边形的对角线有 条,它们内角和为 .
8.一个多边形的内角和为4320°,则它的边数为 .
9.多边形每个内角都相等,内角和为720°,则它的每一个外角为 .
10.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= .
11.四边形的四个内角中,直角最多有 个,钝角最多有 个, 锐角最多有 个.
12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和增加 .
三、选择题.
1.多边形的每个外角与它相邻内角的关系是( )
A.互为余角 B.互为邻补角 C.两个角相等 D.外角大于内角
2.若n边形每个内角都等于150°,那么这个n边形是( )
A.九边形 B.十边形 C.十一边形 D.十二边形
3.一个多边形的内角和为720°,那么这个多边形的对角线条数为( )
A.6条 B.7条 C.8条 D.9条
4.随着多边形的边数n的增加,它的外角和( )
A.增加 B.减小 C.不变 D.不定
5.若多边形的外角和等于内角和的号,它的边数是( )
A.3 B.4 C.5 D.7
6.一个多边形的内角和是1800°,那么这个多边形是( )
A.五边形 B.八边形 C.十边形 D.十二边形
7.一个多边形每个内角为108°,则这个多边形( )
A.四边形 B,五边形 C.六边形 D.七边形
8,一个多边形每个外角都是60°,这个多边形的外角和为( )
A.180° B.360° C.720° D.1080°
9.n边形的n个内角中锐角最多有( )个.
A.1个 B.2个 C.3个 D.4个
10.多边形的内角和为它的外角和的4倍,这个多边形是( )
A.八边形 B.九边形 C.十边形 D,十一边形
四、解答题.
1.一个多边形少一个内角的度数和为2300°.
(1)求它的边数; (2)求少的那个内角的度数.
2.一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢?
3.已知多边形的内角和为其外角和的5倍,求这个多边形的边数.
4.若一个多边形每个外角都等于它相邻的内角的,求这个多边形的边数.
5.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数.
6.n边形的内角和与外角和互比为13:2,求n.
7.五边形ABCDE的各内角都相等,且AE=DE,AD∥CB吗?
8.将五边形砍去一个角,得到的是怎样的图形?
9.四边形ABCD中,∠A+∠B=210°,∠C=4∠D.求:∠C或∠D的度数.
10.在四边形ABCD中,AB=AC=AD,∠DAC=2∠BAC.
求证:∠DBC=2∠BDC.
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 5 页课件中心精品资料 www. 找精品资料 到课件中心
7.4 课题学习 镶嵌同步练习
(检测时间50分钟 满分100分)
班级________ 姓名_________ 得分______
一、选择题:(每小题3分,共18分)
1.用形状、大小完全相同的图形不能镶嵌成平面图案的是( )毛
A.等腰三角形 B.正方形 C.正五边形 D.正六边形
2.下列图形中,能镶嵌成平面图案的是( )
A.正六边形 B.正七边形 C.正八边形 D.正九边形
3.不能镶嵌成平面图案的正多边形组合为( )
A.正八边形和正方形 B.正五边形和正十边形
C.正六边形和正三角形 D.正六边形和正八边形
4.如图所示,各边相等的五边形ABCDE中,若∠ABC=2∠DBE,则∠ABC等于( )
A.60° B.120° C.90° D.45°
5.用正三角形和正十二边形镶嵌,可能情况有( )
A.1种 B.2种 C.3种 C.4种
6.用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n 个正六边形,则m,n满足的关系式是( )
A.2m+3n=12 B.m+n=8 C.2m+n=6 D.m+2n=6
二、填空题:(每小题4分,共12分)
1.用正三角形和正六边形镶嵌,在每个顶点处有_______个正三角形和_____ 个正六边形,或在每个顶点处有______个正三角形和________个正六边形.
2.用正多边形镶嵌,设在一个顶点周围有m个正方形、n个正八边形,则m=_____,n=______.
3.用一种正五边形或正八边形的瓷砖_______铺满地面.(填“能”或“不能”)
三、基础训练:(每小题15分,共30分)
1.计算用一种正多边形拼成平整、无隙的图案,你能设计出几种方案 画出草图.
2.用一个正方形、一个正五边形、一个正二十边形能否镶嵌成平面图案 说明理由.
四、提高训练:(共15分)
请你设计在每一个顶点处由四个正多边形拼成的平面图案, 你能设计出多少种不同的方案
五、探索发现:(共15分)
如图2所示的地面全是用正三角形的材料铺设而成的.
(1)用这种形状的材料为什么能铺成平整、无隙的地面
(2)像上面那样铺地砖,能否全用正十边形的材料 为什么
(3)你能不能另外想出一种用多边形(不一定是正多边形)的材料铺地面的方案 把你想到的方案画成草图.
六、中考题竞赛题:(共10分)
用黑、白两种颜色的正六边形地砖按如图3所示的规律,拼成若干个图案.
(1)第四个图案中有白色地砖_______块;
(2)第n个图案中有白色地砖________块.
答案:
一、1.C 2.A 3.C 4.A 5.A 6.D
二、1.2 2 4 1 2.1 2 3.不能
三、略
四、略
五、(1)每个顶点周围有6个正三角形的内角,恰好组成一个周角.
(2)不能,因为正十边形的内角不能组成360°.
(3)能(图略)
六、(1)18 (2)4n+2.毛
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.1.3三角形的稳定性
教材地位和作用:学生已学习了三角形的高线、角平分线,中点,的基础上,进一步来探究三角形的稳定性质,以及四边形的不稳定性。由于这节课在实际问题的情境中具有很大的应用价值,所以上好这节课对激发学生的学习兴趣,体会数学的应用价值有着十分重要的作用。
一、教学目标设计
1、知识与技能目标:学习三角形的稳定性。
2、过程与方法目标:通过数学实验的方法师生一起探究三角形的稳定性,学生体验其中的数学方法和思想。
3、情感与态度目标:
(1)通过学生之间的交流活动,培养主动与他人合作交流的意识
(2)让学生树立几何知识源于客观实际,用于实际的观念,激发学生学习兴趣。
二、重点:对三角形稳定性的认识。
难点:三角形稳定性的应用。
三、教学准备:
(1)宽度均匀、长短不一的木条若干根,铁钉若干个。
(2)学生每组宽度均匀的硬纸条、大头针若干。
四、教学媒体设计:PPT课件
五、教学过程设计与分析
教学过程设计 教学过程设计意图
情景引入 提问:为了解决这个问题,今天我们一起来研究研究。
新课讲授活动1(1)、将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(用多媒体演示这个过程。)(2)、将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?(用多媒体演示这个过程。)(3)、让学生亲自动手,体会三角形的稳定性。(这个教具由教师事先准备好,每小组发一套。)每小组根据实验的情况,写出相应的实验结论。由各小组代表发言,师生共同总结出一个重要的结论:三角形具有稳定性。四边形不具有稳定性。活动2比一比谁知道得多:你能举出生活中利用三角形稳定性的例子和利用四边形不稳定性的例子吗?活动3应用新知,回归实际:多媒体播放:三角形框架、起重机、三角形吊臂、屋顶、三角形钢架钢架桥、活动挂架、放缩尺等。问题:(1)你能观察到这些结构的特点吗?(2)你解释一下为何要做这样的结构吗?活动4随堂练习,小试牛刀:1、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 .2、有些人家按了像栅栏样的斜拉铁门,呈平行四边形,拉进拉出,伸缩自如,它应用的原理是:A.三角形的稳定性 B.三角形的不稳定性 C. 四边形的稳定性 D.四边形的不稳定性3学以致用:让学生解决情景引入的问题。活动5再回实际,升华提高:要使四边形木架不变形,至少要再钉上几根木条?五边形呢?六边形呢?n边形呢?你能说出其中的道理吗?
小结提高这节课你有什么收获?
布置作业(1)必做题:相应作业本(2)选做题:课本74页练习题
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.1.1 三角形的边同步练习
(检测时间50分钟 满分100分)
班级________ 姓名_________ 得分______
一、选择题:(每小题3分,共18分)
1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )毛
A.1个 B.2个 C.3个 C.4个
2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )
A.6
3.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )
A.10cm的木棒 B.20cm的木棒; C.50cm的木棒 D.60cm的木棒
4.已知等腰三角形的两边长分别为3和6,则它的周长为( )
A.9 B.12 C.15 D.12或15
5.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )
A.2cm B.3cm C.4cm D.5cm
6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )
A.2个 B.3个 C.4个 D.5个
二、填空题:(每小题3分,共18分)
1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.
2.若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.
3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.
4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.
5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.
6.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.
三、基础训练:(每小题12分,共24分)
1. 如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).
2.已知等腰三角形的两边长分别为4,9,求它的周长.
四、提高训练:(共16分)
设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c 为边的三角形共有几个
五、探索发现:(共16分)
若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少
六、中考题与竞赛题:(每小题4分,共8分)
1.(南京)有下列长度的三条线段,能组成三角形的是( )
A.1cm,2cm,3cm B.1cm,2cm,4cm; C.2cm,3cm,4cm D.2cm,3cm,6cm
2.(青海)两根木棒的长分别是8cm,10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________;如果以5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.
答案:
一、1.B 2.D 3.B 4.C 5.B 6.B
二、1.52 4.3 5.5cm 6.7cm
三、
1.解:在△APB中,AP+BP>AB,
同理BP+PC>BC,PC+AP>AC,
三式相加得2(AP+BP+PC)>AB+AC+BC,
∴AP+BP+CP>(AB+AC+BC).
2.22
四、5个
五、25个
六、1.C 2.2cm课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.2 与三角形有关的角
7.2.1 三角形的内角
【教学目标】
1.理解三角形内角和定理的推导;
2.感受简单的逻辑推理.
【对话探索设计】
〖探索1〗
如图,直线DE经过点A,DE∥BC,∠B=m ,∠C=n .
(1)∠DAB等于多少度 为什么
(2)∠EAC等于多少度 为什么
(3)∠BAC等于多少度
〖阅读理解〗
(见P78)
〖试一试〗
如图,按以下格式证明三角形的内角和等于180 :
证明:过A作DE∥BC,
∵DE∥BC(辅助线的作法),
∴∠1=∠B,∠3=∠C(________________).
∵∠1+∠2+∠3=180
(____________________),
∴∠B+∠2+∠C=∠1+∠2+∠3=180
(_____________________).
〖预备题〗
如图,AD∥BE,∠EBC=25 ,∠EBA=70 ,∠DAC=35 .图中哪些角是可求的,请按顺序求出来.
〖例题学习〗
注意学习几何计算题的表达.
〖探索2〗
你还能想出这道例题的其它解法吗
〖练习〗
P80.1,(该题应加一个条件:B在AD上.)
P80.2.(不用四边形的内角和.)
〖作业〗
P81.习题1,2,3,4.
【备用练习】
1.(1)在直角三角形ABC中,若∠C=90 ,则∠B+∠A=90 .对吗
(2)把(1)中的命题反过来,怎么讲 它还是正确的吗
(3)把(1)中的命题改写为:" 在直角三角形ABC中,若∠B+∠A=90 ,则∠C=90 .为什么不对
2.(1)已知:如图,在△ABC中,∠A=60°,角平分线相交于点D.你认为∠BDC的度数确定吗 如果能,求出它的度数;如果不能,举例说明.
(2)已知:如图,在△ABC中,角平分线相交于点D.如果说∠BDC=90 +∠A,对吗
3.如图,两条平行线被第三条直线所截,交点为A、B,CA平分∠DAB, CB平分∠ABE,填空:
∵AD∥BE,
∴∠DAB+∠EBA=180
(_____________________).
∵∠CAB=∠DAB, ∠CBA=∠EBA,
∴∠CAB+∠CBA=______(等式的性质).
∴∠C=90 (____________________).
4.在ΔABC中,若∠C=∠A+∠B,哪一个角是可求的 若∠A+∠B=2∠C呢
5.如图,在ΔABC中,∠B=42 ,∠C=52 ,AD平分∠BAC,求∠ADC.
6.(1)如图,CD是直角三角形斜边AB上的高,图中有与∠A相等的角吗 为什么
(2)把(1)图中的CD平移得ED,图中还有与∠A相等的角吗 为什么
(3)如图,把(1)图中的CD平移,交BC的延长线于E. 图中还有与∠A相等的角吗 为什么
7.如图,把一副三角尺的直角顶点重合,
求∠CAD+∠EAB的度数.
证明的格式可暂不作要求,但一定要教好.
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.2.2三角形的外角
教学目标
1使学生在操作活动中,探索并了解三角形的外角的两条性质
2利用学过的定理论证这些性质
3能利用三角形的外角性质解决实际问题
重点:(1)三角形的外角的性质;(2)三角形外角和定理
难点:三角形外角的定义及定理的论证过程
教学过程:
1、 想一想
1三角形的内角和定理是什么?
2、 做一做
把的一边AB延长到D,得,它不是三角形的内角,那它是三角形的什么角?
它是三角形的外角。
定义:三角形一边与另一边的延长线组成的角,叫做三角形的外角
想一想:三角形的外角有几个?
每个顶点处有两个外角,但这两个是对顶角
3、 议一议
与的内角有什么关系?
(1)
(2),
再画三角形ABC的外角试一试,还会得到这个性质吗?
同学用几何语言叙述这个性质:
三角形的一个外角等于它不相邻的两个内角之和;
三角形的一个外角大于与它不相邻的任何一个内角。
你能用学过的定理说明这些定理的成立吗?
已知:是的外角
说明:
(1)
(2),
结合下面图形给予说明
练一练:课本P81,练习
作业:课本P82,6,7,8,9
备选题
1 如图,是三角形ABC的不同三个外角,则
2三角形的三个外角中最多有 锐角,最多有 个钝角,最多有 个直角
3的两个内角的一平分线交于点E,,则
4已知的的外角平分线交于点D,,那么=
5如图,是 外角, + ,是 外角,= + ,是 外角,= + ,> , >
6在中等于和它相邻的外角的四分之一,这个外角等于的两倍,那么
, ,
课件中心精品资料 www. 版权所有@课件中心 第 2 页 共 2 页课件中心精品资料 www. 找精品资料 到课件中心
7.2.2 三角形的外角同步练习
(检测时间50分钟 满分100分)
班级________ 姓名_________ 得分______
一、选择题:(每小题3分,共18分)
1.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )毛
A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定
2.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )
A.30° B.60° C.90° D.120°
3.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )
A.90° B.110° C.100° D.120°
4.已知等腰三角形的一个外角是120°,则它是( )
A.等腰直角三角形; B.一般的等腰三角形; C.等边三角形; D.等腰钝角三角形
5.如图1所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( )
A.120° B.115° C.110° D.105°
(1) (2) (3)
6.如图2所示,在△ABC中,E,F分别在AB,AC上,则下列各式不能成立的是( )
A.∠BOC=∠2+∠6+∠A; B.∠2=∠5-∠A; C.∠5=∠1+∠4; D.∠1=∠ABC+∠4
二、填空题:(每小题3分,共18分)
1.三角形的三个外角中,最多有_______个锐角.
2.如图3所示,∠1=_______.
3.如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是____度.
4.已知等腰三角形的一个外角为150°,则它的底角为_____.
5.如图所示,∠ABC,∠ACB的内角平分线交于点O,∠ABC 的内角平分线与∠ACB的外角平分线交于点D,∠ABC与∠ACB的相邻外角平分线交于点E,且∠A=60°, 则∠BOC=_______,∠D=_____,∠E=________.
6.如图所示,∠A=50°,∠B=40°,∠C=30°,则∠BDC=________.
三、基础训练:(共20分)
如图所示,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,求∠BOC的度数.
四、提高训练:(共20分)
如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC的度数.
五、探索发现:(共20分)
如图所示,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.
六、中考题与竞赛题:(共4分)
(吉林)如图所示,∠CAB的外角等于120°,
∠B等于40°,则∠C 的度数是_______.
答案:
一、1.C 2.C 3.C 4.C 5.B 6.C
二、1.1 2.120° 3.95 4.30°或75° 5.120° 30° 60° 6.120°
三、∠BOC=125°
四、∠DAC=24°
五、 (说明略)
六、80°.毛
课件中心精品资料 www. 版权所有@课件中心 第 2 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.1.2 三角形的高、中线与角平分线、三角形的稳定性
同步练习
(检测时间50分钟 满分100分)
班级________ 姓名_________ 得分______
一、选择题:(每小题3分,共18分)
1.如图1所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B 落在点B′的位置,则线段AC具有性质( )毛
A.是边BB′上的中线 B.是边BB′上的高
C.是∠BAB′的角平分线 D.以上三种性质合一
(1) (2) (3)
2.如图2所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )
A.DE是△BCD的中线 B.BD是△ABC的中线
C.AD=DC,BD=EC D.∠C的对边是DE
3.如图3所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点, 且S △ABC=4cm2,则S阴影等于( )
A.2cm2 B.1cm2 C.cm2 D.cm2
4.在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( )
A.AH5.在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( )
A.30 B.36 C.72 D.24
6.不是利用三角形稳定性的是( )
A.自行车的三角形车架 B.三角形房架
C.照相机的三角架 D.矩形门框的斜拉条
二、填空题:(每小题3分,共12分)
1.直角三角形两锐角的平分线所夹的钝角为_______度.
2.等腰三角形的高线、角平分线、中线的总条数为________.
3.在△ABC中,∠B=80°,∠C=40°,AD,AE分别是△ABC的高线和角平分线, 则∠DAE的度数为_________.
4.三角形的三条中线交于一点,这一点在_______, 三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____.
三、基础训练:(每小题15分,共30分)
1.如图所示,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.
2.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm, 求AD的长.
四、提高训练:(共15分)
在△ABC中,∠A=50°,高BE,CF所在的直线交于点O,求∠BOC的度数.
五、探索发现:(共20分)
如图5所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s与n有什么关系,并求出当n=13时,s的值.
六、中考题与竞赛题:(共5分)
(杭州)AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.
答案:
一、1.D 2.D 3.B 4.D 5.B 6.C
二、1.135 2.3条或7条 3.20°
4.三角形内部 三角形内部 三角形内部、 边上或外部
三、1.∠AEC=45° 2.AD=13cm
四、∠BOC=50°或130°
五、s=3n-3,当n=13时,s=36.
六、AD=AE.毛
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 3 页课件中心精品资料 www. 找精品资料 到课件中心
7.3 多边形及其内角和
7.3.1 多边形
[教学目标]
1.了解多边形及有关概念,理解正多边形及其有关概念.
2.区别凸多边形与凹多边形.
[教学重点、难点]
1.重点:
(1)了解多边形及其有关概念,理解正多边形及其有关概念.
(2)区别凸多边形和凹多边形.
2.难点:
多边形定义的准确理解.
[教学过程]
一、新课讲授
投影:图形见课本P84图7.3一l.
你能从投影里找出几个由一些线段围成的图形吗?
上面三图中让同学边看、边议.
在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?
(1)它们在同一平面内.
(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.
这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?
提问:三角形的定义.
你能仿照三角形的定义给多边形定义吗?
1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.
如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)
2.多边形的边、顶点、内角和外角.
多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.
3.多边形的对角线
连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.
让学生画出五边形的所有对角线.
4.凸多边形与凹多边形
看投影:图形见课本P85.7.3—6.
在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.
5.正多边形
由正方形的特征出发,得出正多边形的概念.
各个角都相等,各条边都相等的多边形叫做正多边形.
二、课堂练习
课本P86练习1.2.
三、课堂小结
引导学生总结本节课的相关概念.
四、课后作业
课本P90第1题.
备用题:
一、判断题.
1.由四条线段首尾顺次相接组成的图形叫四边形.( )
2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.( )
3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.( )
4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.( )
二、填空题.
1.连接多边形 的线段,叫做多边形的对角线.
2.多边形的任何 所在的直线,整个多边形都在这条直线的 ,这样的多边形叫凸多边形.
3.各个角 ,各条边 的多边形,叫正多边形.
三、解答题.
1.画出图(1)中的六边形ABCDEF的所有对角线.
2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?
3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?
4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?
课件中心精品资料 www. 版权所有@课件中心 第 1 页 共 3 页