成套的课件成套的教案成套的试题尽在高中数学同步资源大全QQ群483122854
人教版高中数学选择性必修第三册
6.1分类加法计数原理与分步乘法计数原理(1)B组能力提高训练(原卷版)
一、选择题
1.(2021·吉林扶余市第一中学高二)若准备用1个字符给一本书编号,其中可用字符为字母,,,也可用数字字符1,2,3,4,5,则不同的编号有( )
A.2种 B.5种 C.8种 D.15种
2.(2021·全国高二课时练)设M、N是两个非空集合,定义M N={(a,b)|a∈M,b∈N},若P={0,1,2 },Q={1,2},则P Q中元素的个数是( )
A.4 B.9 C.6 D.3
3.(2021·陕西西安市高二期末)将3名防控新冠疫情志愿者全部分配给2个不同的社区服务,不同的分配方案有( )
A.12种 B.9种 C.8种 D.6种
4.(2021·全国高二课时练)若一位三位数的自然数各位数字中,有且仅有两个数字一样,我们就把这样的三位数定义为“单重数”.例如:232,114等,则不超过200的“单重数”中,从小到大排列第22个“单重数”是( )
A.166 B.171 C.181 D.188
5.(多选题)(2021·全国高二课时练)有4位同学报名参加三个不同的社团,则下列说法正确的是( )
A. 每位同学限报其中一个社团,则不同的报名方法共有种
B. 每位同学限报其中一个社团,则不同的报名方法共有种
C. 每个社团限报一个人,则不同的报名方法共有24种
D. 每个社团限报一个人,则不同的报名方法共有种
6. (多选题)(2021·辽宁本溪市·高二月考)几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝,,;(2)乙在下落的过程中依次撞击到树枝,,;(3)丙在下落的过程中依次撞击到树枝,,;(4)丁在下落的过程中依次撞击到树枝,,;(5)戊在下落的过程中依次撞击到树枝,,,下列结论正确的是( )
A.最高处的树枝为 当中的一个
B.最低处的树枝一定是
C.这九棵树枝从高到低不同的顺序共有33种
D.这九棵树枝从高到低不同的顺序共有32种
二、填空题
7.(2021·全国高二课时练)某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲乙不参加同一项,则不同的报名方法种数为_____________.
8.数学与文学有许多奇妙的联系,如诗中有回文诗“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343 ,12521等.两位数的回文数有11 ,22 ,3,……,99共9个,则在三位数的回文数中偶数的个数是_____________.
9.(2020·福建漳州高二月考)高三年段有四个老师分别为,这四位老师要去监考四个班级,每个老师只能监考一个班级,一个班级只能有一个监考老师.现要求老师不能监考班,老师不能监考班,老师不能监考班,老师不能监考班,则不同的监考方式有____种.
10.(2021·全国高二课时练习)工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.
三、解答题
11.已知集合,若a,b,c∈M,则:
(1)可以表示多少个不同的二次函数?
(2)可以表示多少个图象开口向上的二次函数?
12.现某学校共有34人自愿组成数学建模社团,其中高一年级13人,高二年级12人,高三年级9人.
(1)选其中一人为负责人,共有多少种不同的选法?
(2)每个年级选一名组长,有多少种不同的选法?
(3)选两人作为社团发言人,这两人需要来自不同的年级,有多少种不同的选法?
人教版高中数学选择性必修第三册
6.1分类加法计数原理与分步乘法计数原理(1)B组能力提高训练(解析版)
一、选择题
1.(2021·吉林扶余市第一中学高二)若准备用1个字符给一本书编号,其中可用字符为字母,,,也可用数字字符1,2,3,4,5,则不同的编号有( )
A.2种 B.5种 C.8种 D.15种
【答案】C
【详解】由题意这本书的编号可能是字母,,,有3种,可能是数字:1,2,3,4,5,有效种,共有3+5=8种.故选:C.
2.(2021·全国高二课时练)设M、N是两个非空集合,定义M N={(a,b)|a∈M,b∈N},若P={0,1,2 },Q={1,2},则P Q中元素的个数是( )
A.4 B.9 C.6 D.3
【答案】C
【详解】因为P={0,1,2},Q={1,2},所以a有3种选法,b有2种取法,
根据乘法原理,可得P Q中元素的个数是:3×2=6(个).故选C.
3.(2021·陕西西安市高二期末)将3名防控新冠疫情志愿者全部分配给2个不同的社区服务,不同的分配方案有( )
A.12种 B.9种 C.8种 D.6种
【答案】C
【详解】每名防控新冠疫情志愿者都有两种不同的分配方法,根据分步计数原理可知,不同的分配方案总数为种.故选:C
4.(2021·全国高二课时练)若一位三位数的自然数各位数字中,有且仅有两个数字一样,我们就把这样的三位数定义为“单重数”.例如:232,114等,则不超过200的“单重数”中,从小到大排列第22个“单重数”是( )
A.166 B.171 C.181 D.188
【答案】B
【详解】由题意可得:不超过200的数,
两个数字一样同为0时,有100,200有2个,
两个数字一样同为1时,有110,101,112,121,113,131,一直到191,119,共18个,
两个数字一样同为2时,有122,有1个
同理,两个数字一样同为3,4,5,6,7,8,9时各1个,
综上,不超过200的“单重数”共有,
其中最大的是200,较小的依次为199,191,188,181,177,171,
故第22个“单重数”为171,故选:B.
5.(多选题)(2021·全国高二课时练)有4位同学报名参加三个不同的社团,则下列说法正确的是( )
A. 每位同学限报其中一个社团,则不同的报名方法共有种
B. 每位同学限报其中一个社团,则不同的报名方法共有种
C. 每个社团限报一个人,则不同的报名方法共有24种
D. 每个社团限报一个人,则不同的报名方法共有种
【答案】AC
【详解】对于A选项, 第1个同学有3种报法,第2个同学有3种报法,后面的2个同学也有3种报法,根据分步计数原理共有种结果,A正确,B错误;对于C选项,每个社团限报一个人,则第1个社团有4种选择,第2个社团有3种选择,第3个社团有2种选择,根据分步计数原理共有种结果,C正确,D错误.
6. (多选题)(2021·辽宁本溪市·高二月考)几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝,,;(2)乙在下落的过程中依次撞击到树枝,,;(3)丙在下落的过程中依次撞击到树枝,,;(4)丁在下落的过程中依次撞击到树枝,,;(5)戊在下落的过程中依次撞击到树枝,,,下列结论正确的是( )
A.最高处的树枝为 当中的一个
B.最低处的树枝一定是
C.这九棵树枝从高到低不同的顺序共有33种
D.这九棵树枝从高到低不同的顺序共有32种
【答案】AC
【详解】解:由题判断出部分树枝由高到低的顺序为,还剩下,,,且树枝比高,树枝在树枝,之间,树枝比低,故选项正确;
先看树枝,有4种可能,若在,之间,
则有3种可能:①在,之间,有5种可能;
②在,之间,有4种可能;
③在,之间,有3种可能,
此时树枝的高低顺序有(种)。
若不在,之间,则有3种可能,有2中可能,
若在,之间,则有3种可能,
若在,之间,则有三种可能,
此时树枝的高低顺序有(种)可能,
故这九根树枝从高到低不同的顺序共有种,故选项正确.故选:AC.
二、填空题
7.(2021·全国高二课时练)某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲乙不参加同一项,则不同的报名方法种数为_____________.
【答案】54
【详解】甲有三个培训可选,甲乙不参加同一项,所以乙有二个培训可选,丙、丁各有三个培训可选,根据乘法计数原理,不同的报名方法种数为.
8.数学与文学有许多奇妙的联系,如诗中有回文诗“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343 ,12521等.两位数的回文数有11 ,22 ,3,……,99共9个,则在三位数的回文数中偶数的个数是_____________.
【答案】40
【详解】由题意,若三位数的回文数是偶数,则末(首)位可能为,,,.如果末(首)位为,中间一位数有种可能,同理可得,如果末(首)位为或或,
中间一位数均有种可能,所以有个.
9.(2020·福建漳州高二月考)高三年段有四个老师分别为,这四位老师要去监考四个班级,每个老师只能监考一个班级,一个班级只能有一个监考老师.现要求老师不能监考班,老师不能监考班,老师不能监考班,老师不能监考班,则不同的监考方式有____种.
【答案】9
【解析】当老师监考班时,剩下的三位老师有3种情况,同理当老师监考班时,也有3种,当老师监考班时,也有3种,共9种,
10.(2021·全国高二课时练习)工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.
【答案】60
【解析】根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有种方法,故答案是60.
三、解答题
11.已知集合,若a,b,c∈M,则:
(1)可以表示多少个不同的二次函数?
(2)可以表示多少个图象开口向上的二次函数?
【解析】(1)根据,表示二次函数,由此可判断a的取值情况,再分别判断b,c的取值情况,然后利用分步乘法计数原理求解.
(2)根据二次函数的性质,开口向上,则,由此可判断a的取值情况,再分别判断b,c的取值情况,然后利用分步乘法计数原理求解.
详解:
(1)因为a不能取0,所以有5种取法,b有6种取法,c有6种取法,
所以可以表示个不同的二次函数.
(2)的图象开口向上时,a不能取小于等于0的数,所以有2种取法,b有6种取法,c有6种取法,
所以可以表示个图象开口向上的二次函数
12.现某学校共有34人自愿组成数学建模社团,其中高一年级13人,高二年级12人,高三年级9人.
(1)选其中一人为负责人,共有多少种不同的选法?
(2)每个年级选一名组长,有多少种不同的选法?
(3)选两人作为社团发言人,这两人需要来自不同的年级,有多少种不同的选法?
【解析】(1)根据题意,选其中一人为负责人,有3种情况,
若选出的是高一学生,有13种情况,
若选出的是高二学生,有12种情况,
若选出的是高三学生,有9种情况,
由分类计数原理可得,共有12+13+9=34种选法.
(2)根据题意,从高一学生中选出1人,有13种情况;
从高二学生中选出1人,有12种情况;
从高三学生中选出1人,有9种情况;
由分步计数原理,可得共有12×13×9=1404种选法.
(3)根据题意,分三种情况讨论:
若选出的是高一、高二学生,有12×13=156种情况,
若选出的是高一、高三学生,有13×9=117种情况,
若选出的是高二、高三学生,有12×9=108种情况,
由分类计数原理可得,共有156+117+108=381种选法.
联系QQ309000116加入百度网盘群3500G一线老师必备资料一键转存,自动更新,一劳永逸