本资料分享自高中数学同步资源大全QQ群483122854 专注收集同步资源期待你的加入与分享
人教版高中数学选择性必修第三册
6.1分类加法计数原理与分步乘法计数原理同步精练(原卷版)
【题组一 分类加法计数原理】
1.(2021·南宁市银海三美学校)某小组有8名男生,4名女生,要从中选取一名当组长,不同的选法有( )
A.32种 B.9种 C.12种 D.20种
2.(2021·四川乐山)从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.则从甲地到丙地的走法种数( )
A.8 B.6 C.5 D.2
3.(2020·三亚华侨学校)某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有( )
A.24种 B.9种 C.3种 D.26种
4.(2021·山东高二)现有高一学生5名,高二学生4名,高三学生3名.从中任选1人参加市团委组织的演讲比赛,有多少种不同的选法( )
A.60 B.45 C.30 D.12
5.(2020·博兴县第三中学高二月考)若一位三位数的自然数各位数字中,有且仅有两个数字一样,我们就把这样的三位数定义为“单重数”.例如:232,114等,则不超过200的“单重数”中,从小到大排列第22个“单重数”是( )
A.166 B.171 C.181 D.188
6(2020·大名县第一中学)某玩具厂参加2020年邯郸园博园产品展出,带了四款不同类型不同价格的玩具牛,它们的价格费你别是20,30,50,100,某礼品进货商想趁牛年之际搞一个玩具特卖会,准备买若干款不同类型的玩具样品(每款只购一只,且必须至少买一款),因信用卡出现故障,身上现金只剩170元,请问该礼品进货商购买玩具样品的方案有___种(用数字表示).
7.(2020·陕西高二期末)某同学从4本不同的科普杂志、3本不同的文摘杂志、2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有_______________种
【题组二 分步乘法计数原理】
1.(2020·广东云浮·高二期末)某演讲比赛候选人中高一学生5名,高二学生4名,高三学生3名,从每个年级中各选1人参加市团委组织的演讲比赛,则不同的选法有( )
A.60种 B.45种 C.30种 D.12种
2.(2020·陕西高二期末)将3名防控新冠疫情志愿者全部分配给2个不同的社区服务,不同的分配方案有( )
A.12种 B.9种 C.8种 D.6种
3.(2020·山东菏泽·高二期末)从A地到B地要经过C地,已知从A地到C地有三条路,从C地到B地有四条路,则从A地到B地不同的走法种数是( )
A.7 B.9 C.12 D.16
4.(2020·陕西高二月考(理))有6位同学报名参加三个数学课外活动小组,每位同学限报其中一个小组,则不同的报名方法共有( )
A. B. C. D.
5.(2020·湖北车城高中高二期中)现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )
A.150种 B.180种 C.240种 D.120种
6.(2020·广东佛山·高二期末)已知某体育场有4个门,从一个门进,另一个门出,则不同的走法的种数为__.
7.(2020·陕西省商丹高新学校高二期中)一电路图如图所示,从到共有__________条不同的线路可通电.
8.(2020·浙江高三其他模拟)现有6名选手参加才艺比赛,其中男、女选手各3名,且3名男选手分别表演歌唱、舞蹈和魔术,3名女选手分别表演歌唱、舞蹈和魔术,若要求相邻出场的选手性别不同且表演的节目不同,则不同的出场方式的种数为( )
A.6 B.12 C.18 D.24
【题组三 两个计数原理综合运用】
1.(2020·常州市新桥高级中学高二期中)现用五种不同的颜色,要对如图中的四个部分进行着色,要求公共边的两块不能用同一种颜色,共有__________种不同着色方法
2.(2020·陕西咸阳·高二期末(理))已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.已知顾客甲只会用现金结账,顾客乙只会用现金和银联卡结账,顾客丙与甲、乙结账方式不同,顾客丁用哪种结账方式都可以.若甲乙丙丁购物后依次结账,则他们结账方式的组合种数共________种.
3.(2020·广东)已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲只会用现金结账,顾客乙只会用现金和银联卡结账,顾客丙与甲.乙结账方式不同,丁用哪种结账方式都可以若甲乙丙丁购物后依次结账,那么他们结账方式的组合种数共有 种
4.(2020·浙江高三其他模拟)现用4种不同的颜色对如图所示的正方形的6个区域进行涂色,要求相邻的区域不能涂同一种颜色,则不同的涂色方案有______种.
5.(2021·浙江诸暨中学)假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有________种不同的支付方式.
6.己知六个函数:①;②;③;④;⑤;⑥,从中任选三个函数,则其中既有奇函数又有偶函数的选法共有_______种.
7.(2020·河南南阳华龙高级中学高二月考)有一项活动,需要在3名老师、8名男同学和5名女同学中选人参加.
(1)若只需选1人参加,则有多少种不同的选法?
(2)若需要老师、男同学、女同学各1人参加,则有多少种不同的选法?
(3)若需要1名老师、1名学生参加,则有多少种不同的选法?
人教版高中数学选择性必修第三册
6.1分类加法计数原理与分步乘法计数原理同步精练(解析版)
【题组一 分类加法计数原理】
1.(2021·南宁市银海三美学校)某小组有8名男生,4名女生,要从中选取一名当组长,不同的选法有( )
A.32种 B.9种 C.12种 D.20种
【答案】C
【解析】从8名男生4名女生选取一名当组长,是男生的选法有8种,是女生选法的有4种,共有12种.
故选:C.
2.(2021·四川乐山)从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.则从甲地到丙地的走法种数( )
A.8 B.6 C.5 D.2
【答案】A
【解析】由题意分两种情况讨论:一是从甲地经过乙地到丙地,
因为从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,
所以从甲地到丙地的走法有种,
二是从甲地不经过乙地到丙地,
因为从甲地不经过乙地到丙地有2条
所以从甲地到丙地的走法有2种,
故从甲地到丙地的走法共有种,
故选:A
3.(2020·三亚华侨学校)某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有( )
A.24种 B.9种 C.3种 D.26种
【答案】B
【解析】某同学从4本不同的科普杂志任选1本,有4种不同选法,
从3本不同的文摘杂志任选1本,有3种不同的选法,
从2本不同的娱乐新闻杂志中任选一本,有2种不同的选法,
根据分类加法原理可得,该同学不同的选法有:种.
故选:B.
4.(2021·山东高二)现有高一学生5名,高二学生4名,高三学生3名.从中任选1人参加市团委组织的演讲比赛,有多少种不同的选法( )
A.60 B.45 C.30 D.12
【答案】D
【解析】因为三个年级共有名学生,由分类加法计数原理可得:
从中任选1人参加市团委组织的演讲比赛,共有种不同的选法.
故选:D.
5.(2020·博兴县第三中学高二月考)若一位三位数的自然数各位数字中,有且仅有两个数字一样,我们就把这样的三位数定义为“单重数”.例如:232,114等,则不超过200的“单重数”中,从小到大排列第22个“单重数”是( )
A.166 B.171 C.181 D.188
【答案】B
【解析】由题意可得:不超过200的数,
两个数字一样同为0时,有100,200有2个,
两个数字一样同为1时,有110,101,112,121,113,131,一直到191,119,共18个,
两个数字一样同为2时,有122,有1个
同理,两个数字一样同为3,4,5,6,7,8,9时各1个,
综上,不超过200的“单重数”共有,
其中最大的是200,较小的依次为199,191,188,181,177,171,
故第22个“单重数”为171,
故选:B.
6(2020·大名县第一中学)某玩具厂参加2020年邯郸园博园产品展出,带了四款不同类型不同价格的玩具牛,它们的价格费你别是20,30,50,100,某礼品进货商想趁牛年之际搞一个玩具特卖会,准备买若干款不同类型的玩具样品(每款只购一只,且必须至少买一款),因信用卡出现故障,身上现金只剩170元,请问该礼品进货商购买玩具样品的方案有___种(用数字表示).
【答案】13
【解析】依题意,每款只购一只,且必须至少买一款,且消费金额不能超过170元,
故可分为以下几种情况:
①只购买一款玩具样品,共四种方案
②购买两款玩具样品,
买20和30的各一只;买20和50的各一只;买20和100的各一只;买30和50的各一只;买30和100的各一只;买50和100的各一只;共六种方案;
③购买三款玩具样品
买20,30和50的各一只;买20,30和100的各一只;买20、50和100的各一只;
共3种方案;
所以购买玩具的方案共有13种;
故答案为:13
7.(2020·陕西高二期末)某同学从4本不同的科普杂志、3本不同的文摘杂志、2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有_______________种
【答案】9
【解析】根据题意,选取的杂志可分三类:科普,文摘,娱乐新闻.
共种不同选法.故答案为:9.
【题组二 分步乘法计数原理】
1.(2020·广东云浮·高二期末)某演讲比赛候选人中高一学生5名,高二学生4名,高三学生3名,从每个年级中各选1人参加市团委组织的演讲比赛,则不同的选法有( )
A.60种 B.45种 C.30种 D.12种
【答案】A
【解析】由乘法计数原理可得共有种不同的选法.故选:A.
2.(2020·陕西高二期末)将3名防控新冠疫情志愿者全部分配给2个不同的社区服务,不同的分配方案有( )
A.12种 B.9种 C.8种 D.6种
【答案】C
【解析】每名防控新冠疫情志愿者都有两种不同的分配方法,根据分步计数原理可知,不同的分配方案总数为种.
故选:C
3.(2020·山东菏泽·高二期末)从A地到B地要经过C地,已知从A地到C地有三条路,从C地到B地有四条路,则从A地到B地不同的走法种数是( )
A.7 B.9 C.12 D.16
【答案】C
【解析】根据题意分两步完成任务:
第一步:从A地到C地,有3种不同的走法;
第二步:从C地到B地,有4种不同的走法,
根据分步乘法计数原理,从A地到B地不同的走法种数:种,
故选:C.
4.(2020·陕西高二月考(理))有6位同学报名参加三个数学课外活动小组,每位同学限报其中一个小组,则不同的报名方法共有( )
A. B. C. D.
【答案】A
【解析】由题意知本题是一个分步计数问题,
第一个同学有3种报法,第二个同学有3种报法,
后面的四个同学都有三种报法,
根据分步计数原理知共有种结果,
故选:.
5.(2020·湖北车城高中高二期中)现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )
A.150种 B.180种 C.240种 D.120种
【答案】B
【解析】分步涂色,第一步对涂色有5种方法,第二步对涂色有4种方法,第三步对涂色有3种方法,第四步对涂色有3种方法,
∴总的方法数为.
故选:B.
6.(2020·广东佛山·高二期末)已知某体育场有4个门,从一个门进,另一个门出,则不同的走法的种数为__.
【答案】12
【解析】根据题意,某体育场有4个门,从一个门进,有4种走法,
另一个门出,有3种走法,
则有种不同的走法.
故答案为:12.
7.(2020·陕西省商丹高新学校高二期中)一电路图如图所示,从到共有__________条不同的线路可通电.
【答案】8
【解析】根据电路图可知,共有条不同的线路可通电.
故答案为:8
8.(2020·浙江高三其他模拟)现有6名选手参加才艺比赛,其中男、女选手各3名,且3名男选手分别表演歌唱、舞蹈和魔术,3名女选手分别表演歌唱、舞蹈和魔术,若要求相邻出场的选手性别不同且表演的节目不同,则不同的出场方式的种数为( )
A.6 B.12 C.18 D.24
【答案】B
【解析】设3名男选手分别为,,,他们分别表演歌唱,舞蹈和魔术,3名女选手分别为,,,她们分别表演歌唱,舞蹈和魔术,
若第一个出场的是,则第二个出场的只能是或,若第二个出场的是,则接下来的出场顺序只能是,,,,
同理,若第二个出场的是,则接下来的出场顺序只能是,,,,
所以若第一个出场,则不同的出场方式有2种,故不同的出场方式共有(种),
故选:B
【题组三 两个计数原理综合运用】
1.(2020·常州市新桥高级中学高二期中)现用五种不同的颜色,要对如图中的四个部分进行着色,要求公共边的两块不能用同一种颜色,共有__________种不同着色方法
【答案】
【解析】先排,有种方法;
然后排,最后排:
①当相同时,方法有种,故方法数有种.
②当不同时,方法有种,故方法数有种.
综上所述,不同的着色方法数有种.
故答案为:
2.(2020·陕西咸阳·高二期末(理))已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.已知顾客甲只会用现金结账,顾客乙只会用现金和银联卡结账,顾客丙与甲、乙结账方式不同,顾客丁用哪种结账方式都可以.若甲乙丙丁购物后依次结账,则他们结账方式的组合种数共________种.
【答案】20
【解析】当乙用现金结算时,此时甲和乙都用现金结算,所以丙有3种方法,丁有4种方法,共有种方法,
当乙用银联卡结算时,此时甲用现金结算,丙有2种方法,丁有4种方法,共有种方法,
综上,共有种方法.
故答案为:20.
3.(2020·广东)已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲只会用现金结账,顾客乙只会用现金和银联卡结账,顾客丙与甲.乙结账方式不同,丁用哪种结账方式都可以若甲乙丙丁购物后依次结账,那么他们结账方式的组合种数共有 种
【答案】20
【解析】当乙用现金结算时,此时甲和乙都用现金结算,所以丙有3种方法,丁有4种方法,
共有种方法;当乙用银联卡结算时,此时甲用现金结算,丙有2种方法,丁有4种方法,共有种方法,综上,共有种方法.
故选:D
4.(2020·浙江高三其他模拟)现用4种不同的颜色对如图所示的正方形的6个区域进行涂色,要求相邻的区域不能涂同一种颜色,则不同的涂色方案有______种.
【答案】144
【解析】第一步,对区域1进行涂色,有4种颜色可供选择,即有4种不同的涂色方法;
第二步,对区域2进行涂色,区域2与区域1相邻,有3种颜色可供选择,即有3种不同的涂色方法;
第三步,对区域3进行涂色,区域3与区域1、区域2相邻,有2种颜色可供选择,即有2种不同的涂色方法;
第四步,对于区域4进行涂色,区域4与区域2、区域3相邻,有2种颜色可供选择,即有2种不同的涂色方法;
第五步,对区域5进行涂色,若其颜色与区域4相同,则区域6有2种涂色方法,若其颜色与区域4不同,则区域6只有1种涂色方法,故区域5,6共有种涂色方法,
由分步乘法计数原理知,不同的涂色方案的种数为.
故答案为:144
5.(2021·浙江诸暨中学)假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有________种不同的支付方式.
【答案】6
【解析】9元的支付有两种情况,或者,
①当9元采用方式支付时,
200元的支付方式为,或者或者共3种方式,
10元的支付只能用1张10元,
此时共有种支付方式;
②当9元采用方式支付时:
200元的支付方式为,或者或者共3种方式,
10元的支付只能用1张10元,
此时共有种支付方式;
所以总的支付方式共有种.
故答案为:6.
6.己知六个函数:①;②;③;④;⑤;⑥,从中任选三个函数,则其中既有奇函数又有偶函数的选法共有_______种.
【答案】
【解析】对于①,因为,定义域为且满足,故为偶函数;
对于②,因为,定义域为且满足,故为偶函数;
对于③,因为,定义域为,故非奇非偶函数;
对于④,因为,定义域为且满足,故为奇函数;
对于⑤,因为,定义域为且满足,故为奇函数;
对于⑥,因为,根据函数图象可知为非奇非偶函数.
综上所述,函数中奇函数的有④⑤,偶函数的有①②,③⑥为非奇非偶函数.
任选3个函数,既有奇函数又有偶函数的情况分类讨论:
当选1奇和偶时,种;
当选2奇和偶时,种;
当选1奇,偶,非奇非偶时,种.
一共有种选法.
故答案为:.
7.(2020·河南南阳华龙高级中学高二月考)有一项活动,需要在3名老师、8名男同学和5名女同学中选人参加.
(1)若只需选1人参加,则有多少种不同的选法?
(2)若需要老师、男同学、女同学各1人参加,则有多少种不同的选法?
(3)若需要1名老师、1名学生参加,则有多少种不同的选法?
【答案】(1)16;(2)120;(3)39.
【解析】(1)需一人参加,有三类:第一类选老师,有3种不同的选法;第二类选男生,有8种不同的选法;第三类选女生,有5种不同的选法.共有种不同的选法;
(2)需老师、男同学、女同学各一人,则分3步,第一步选老师,有3种不同的选法;第二步选男生,有8种不同的选法;第三步选女生,有5种不同的选法.共有种不同的选法;
(3)第一步选老师有3种不同的选法,第二步选学生有种不同的选法,共有种不同的选法.
联系QQ309000116加入百度网盘群2500G一线老师必备资料一键转存,自动更新,一劳永逸