中小学教育资源及组卷应用平台
北师大版数学九年级上册第二章测试题
(时间:90分钟 分值:120分)
(一元二次方程)
一、选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)
1.(3分)某超市1月份的营业额是200万元,第一季度的营业额共1000万元,如果每月的增长率都是x,根据题意列出的方程应该是( )
A.200(1+x)2=1000 B.200(1+2x)=1000
C.200+200(1+x)+200(1+x)2=1000 D.200(1+3x)=1000
2.(3分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.则该矩形草坪BC边的长是( )
A.12 B.18 C.20 D.12或20
3.(3分)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为( )
A.1 B.2 C.﹣1 D.﹣2
4.(3分)已知(m2+n2)2﹣2(m2+n2)﹣3=0,则m2+n2=( )
A.﹣1或3 B.3 C.﹣1 D.无法确定
5.(3分)已知关于x的方程(m+3)x2+5x+m2﹣9=0有一个解是0,则m的值为( )
A.﹣3 B.3 C.±3 D.不确定
6.(3分)若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为( )
A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2 D.a<x1<b<x2
7.(3分)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是( )
A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,2
8.(3分)一元二次方程x2﹣6x﹣5=0配方可变形为( )
A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4
9.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )
A.k> B.k>且k≠0 C.k< D.k≥且k≠0
10.(3分)用换元法解方程﹣=3时,设=y,则原方程可化为( )
A.y﹣﹣3=0 B.y﹣﹣3=0 C.y﹣+3=0 D.y﹣+3=0
11.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是( )
A.11 B.10 C.11或10 D.不能确定
12.(3分)若分式的值为零,则x的值为( )
A.3 B.3或﹣3 C.0 D.﹣3
二.填空题(每小题3分,共12分)
13.(3分)关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m 时为一元二次方程.
14.(3分)一元二次方程x2=2x的根是 .
15.(3分)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n= .
16.(3分)写出以4,﹣5为根且二次项的系数为1的一元二次方程是 .
三.解答题(本题有7小题,共52分)
17.(10分)解方程
(1)x2﹣4x﹣5=0
(2)3x(x﹣1)=2﹣2x.
18.(5分)试证明关于x的方程(a2﹣8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.
19.(6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?
20.(8分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?
21.(11分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
22.(12分)如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿AB边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从B点开始沿BC边向点C以2厘米/秒的速度移动(到达点C即停止运动).
(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?
(2)如果P、Q两点分别从A、B两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?
参考答案
一、选择题。
1.C.
2.A.
3.D.
4.B.
5.C.
6.C.
7.A.
8.A.
9.B.
10.A.
11.C.
12.D.
二、填空题。
13.m≠1.
14.x1=0,x2=2.
15.2016.
16.x2+x﹣20=0.
三、解答题。
17.
解:(1)x2﹣4x﹣5=0
(x﹣5)(x+1)=0
∴x﹣5=0或x+1=0,
解得,x1=5,x2=﹣1;
(2)3x(x﹣1)=2﹣2x
3x(x﹣1)+2(x﹣1)=0
(3x+2)(x﹣1)=0
∴3x+2=0或x﹣1=0,
解得,.
18.证明:∵a2﹣8a+20=(a﹣4)2+4≥4,
∴无论a取何值,a2﹣8a+20≥4,即无论a取何值,原方程的二次项系数都不会等于0,
∴关于x的方程(a2﹣8a+20)x2+2ax+1=0,无论a取何值,该方程都是一元二次方程.
19.解:解法一:设矩形温室的宽为xm,则长为2xm,
根据题意,得(x﹣2) (2x﹣4)=288,
∴2(x﹣2)2=288,
∴(x﹣2)2=144,
∴x﹣2=±12,
解得:x1=﹣10(不合题意,舍去),x2=14,
所以x=14,2x=2×14=28.
答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.
解法二:设矩形温室的长为xm,则宽为xm.根据题意,得(x﹣2) (x﹣4)=288.
解这个方程,得x1=﹣20(不合题意,舍去),x2=28.
所以x=28,x=×28=14.
答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.
20.
解:(1)设该种商品每次降价的百分率为x%,
依题意得:400×(1﹣x%)2=324,
解得:x=10,或x=190(舍去).
答:该种商品每次降价的百分率为10%.
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,
第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);
第二次降价后的单件利润为:324﹣300=24(元/件).
依题意得:60m+24×(100﹣m)=36m+2400≥3210,
解得:m≥22.5.
∴m≥23.
答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.
21.解:(1)根据题意得
解得k=﹣1,b=120.
所求一次函数的表达式为y=﹣x+120.
(2)W=(x﹣60) (﹣x+120)
=﹣x2+180x﹣7200
=﹣(x﹣90)2+900,
∵抛物线的开口向下,
∴当x<90时,W随x的增大而增大,
而销售单价不低于成本单价,且获利不得高于45%,
即60≤x≤60×(1+45%),
∴60≤x≤87,
∴当x=87时,W=﹣(87﹣90)2+900=891.
∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.
(3)由W≥500,得500≤﹣x2+180x﹣7200,
整理得,x2﹣180x+7700≤0,
而方程x2﹣180x+7700=0的解为 x1=70,x2=110.
即x1=70,x2=110时利润为500元,而函数y=﹣x2+180x﹣7200的开口向下,所以要使该商场获得利润不低于500元,销售单价应在70元到110元之间,
而60元/件≤x≤87元/件,所以,销售单价x的范围是70元/件≤x≤87元/件.
22.
解:(1)设t秒后,△PBQ的面积等于是△ABC的三分之一,根据题意得:
×2t(6﹣t)=××6×8,
解得:t=2或4.
答:2秒或4秒后,△PBQ的面积等于是△ABC的三分之一.
(2)设x秒时,P、Q相距6厘米,根据题意得:
(6﹣x)2+(2x)2=36,
解得:x=0(舍去)或x=.
答:秒时,P、Q相距6厘米.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)