中小学教育资源及组卷应用平台
北师大版数学九年级上册第四章检测题
(时间:90分钟 分值:120分)
(图形的相似)
一、选择题。
1.如图,在 ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于( )
A.3:2 B.3:1 C.1:1 D.1:2
2.四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S四边形A B C D =( )
A.1:9 B.1:3 C.1:4 D.1:5
3.小刚身高1.7m,测得他站立在阳光下的影长为0.85m,紧接着他把手臂竖直举起,测得影长为1.1m,那么小刚举起手臂超出头顶( )
A.0.5 m B.0.55 m C.0.6 m D.2.2 m
4.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是( )
A.= B.=
C.= D.=
5.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )
A. B. C. D.
6.已知xy=mn,则把它改写成比例式后,错误的是( )
A.= B.= C.= D.=
7.已知,那么的值是( )
A.3 B.4 C.5 D.6
8.下列两个图形一定相似的是( )
A.两个矩形 B.两个等腰三角形
C.两个五边形 D.两个正方形
9.如果两个相似多边形面积的比是4:9,那么这两个相似多边形对应边的比是( )
A.4:9 B.2:3 C.16:81 D.9:4
10.如图,四边形ABCD是平行四边形,E是BC的延长线上一点,AE与CD相交于F,与△CEF相似的三角形有( )个.
A.1 B.2 C.3 D.4
11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是( )
A. B. C. D.
二、填空题。
12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k= .
13.已知一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比k= .
14.在△ABC中,AB=12cm,BC=18cm,AC=24cm,另一个与它相似的△A′B′C′的周长为18cm,则△A′B′C各边长分别为 .
15.一块矩形绸布的宽AB=a m,长AD=1m,按照图中所示的方式将它裁成相同的n面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即,那么a的值应当是 .
16.如图,小亮在晚上由路灯A走向路灯B,当他走到点C时,发现身后他影子的顶部刚好接触到路灯A的底部,当他向前再步行12m到达点D时,发现身前他影子的顶部刚好接触到路灯B的底部.已知小亮的身高是1.5m,两个路灯的高度都是9m.当小亮走到路灯B时,他在路灯A下的影长是 m.
三、解答题。
17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.
(1)证明:△ACD∽△CBD;
(2)已知AD=2,BD=4,求CD的长.
18.如图,AD是△ABC的高,点E,F在边BC上,点H在边AB上,点G在边AC上,AD=80cm,BC=120cm.
(1)若四边形EFGH是正方形,求正方形的面积.
(2)若四边形EFGH是长方形,长方形的面积为y,设EF=x,则y= .(含x的代数式),当x= 时,y最大,最大面积是 .
19.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.
20.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).
①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;
②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.
根据以上测量过程及测量数据,请你求出河宽BD是多少米?
参考答案
一、选择题
1.D 2.A 3.A 4.C 5.C 6.C 7.A 8.D 9.B 10.B 11.C
二、填空题
12.3.
13..
14.4cm,6cm,8cm.
15..
16.3.6.
三、解答题
17.证明:(1)∵∠ACB=90°,CD⊥AB,
∴∠CDA=∠CDB=90°,
∵∠A+∠ACD=∠ACD+∠BCD=90°,
∴∠A=∠BCD,
∴△ACD∽△CBD;
(2)由(1)知△ACD∽△CBD,
∴,
∴CD2=AD BD=2×4=8,
∴CD=2.
18.解:(1)∵四边形EFGH是正方形,
∴HG∥EF,GH=HE=ID,
∴△AHG∽△ABC,
∴AI:AD=HG:BC,
∵BC=120cm,AD=80cm,
∴,
解得:HG=48cm,
∴正方形EFGH的面积=HG2=482=2304(cm2);
(2)∵四边形EFGH是长方形,
∴HG∥EF,
∴△AEF∽△ABC,
∴AI:AD=HG:BC,
即,
解得:HE=﹣x+80,
∴长方形EFGH的面积y=x(﹣x+80)=﹣x2+80x=﹣(x﹣60)2+240,
∵﹣<0,
∴当x=60,即EF=60cm时,长方形EFGH有最大面积,最大面积是240cm2;
故答案为:﹣x2+80x,60cm,240cm2.
19.解:由题意可得:△DEF∽△DCA,
则=,
∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,
∴=,
解得:AC=10,
故AB=AC+BC=10+1.5=11.5(m),
答:旗杆的高度为11.5m.
20.解:由题意得,∠BAD=∠BCE,
∵∠ABD=∠CBE=90°,
∴△BAD∽△BCE,
∴=,
∴=,
解得BD=13.6.
答:河宽BD是13.6米.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)