九年级数学上册试题 21.5反比例函数同步练习沪科版(含答案)

文档属性

名称 九年级数学上册试题 21.5反比例函数同步练习沪科版(含答案)
格式 docx
文件大小 530.4KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2023-08-18 14:37:54

图片预览

文档简介

21.5反比例函数
第一课时
一、单选题
1.若点,,在反比例函数的图像上,则,,的大小关系是( )
A. B. C. D.
2.函数与()在同一坐标系中的图象可能是(  )
A. B. C. D.
3.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是(  )
A. B.
C. D.
4.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是(  )
A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
5.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是(  )
A.4 B.3 C.2 D.1
二、填空题
6.如图,点E、F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是___________.
7.若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为_____.
8.如图,点A是反比例函数的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC,BC,若△ABC的面积为4,则k的值是_____.
9.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为   .
三、解答题
10.如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数()的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.
(1)求点A的坐标及一次函数解析式.
(2)求点C的坐标及反比例函数的解析式.
11.如图,一次函数的图象与反比例函数的图象交于点A与点.
(1)求反比例函数的表达式;
(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接,且过点P作y轴的平行线交直线于点C,连接,若的面积为3,求出点P的坐标.
12.为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y万元,x个月还清贷款,若y是x的反比例函数,其图象如图所示:
(1)求y与x的函数解析式;
(2)若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?
13.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出不等式kx+b﹣>0的解集.
14.如图,一次函数的图像与反比例函数(k>0)的图像交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
第二课时
一、单选题
1.已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有(  )个
A.3 B.2 C.1 D.0
2.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是(  )
A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2
3.对于反比例函数,下列说法不正确的是  
A.图象分布在第二、四象限
B.当时,随的增大而增大
C.图象经过点(1,-2)
D.若点,都在图象上,且,则
4.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为(  )
A. B. C.3 D.5
5.如图,点(),()在双曲线()上,连接,.若,则的值是( )
A.- 12 B.-8 C.-6 D.-4
二、填空题
6.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________
7.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线 与此正方形的边有交点,则a的取值范围是________.
8.如图,在平面直角坐标系中,反比例函数y= (x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.
9.对于函数,当函数值y<﹣1时,自变量x的取值范围是 .
三、解答题
10.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.
(1)求反比例函数y=的表达式;
(2)求点B的坐标;
(3)求△OAP的面积.
11.如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
12.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.
13.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
14.如图1,在平面直角坐标系中,等腰的斜边OB在x轴上,直线经过等腰的直角顶点A,交y轴于C点,双曲线也经过A点连接BC.
(1)求k的值;
(2)判断的形状,并求出它的面积.
(3)若点P为x正半轴上一动点,在点A的右侧的双曲线上是否存在一点M,使得是以点A为直角顶点的等腰直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.
第一课时答案
一、单选题
B.D.D.C.B.
二、填空题
6.
7.2
8.-8
9.2
三、解答题
10.(1)∵OA=OB,点B的坐标为(0,2) ∴点A的坐标为(-2,0)
A、B在一次函数y=kx+b(k≠0)的图象上
∴解得:∴一次函数的解析式为:y=x+2
(2)∵B是线段AC的中点 ∴点C的坐标为(2,4)
又∵点C在反比例函数y=(k≠0)的图象上 ∴k=8 ∴反比例函数的解析式为:y=.
11.
解:(1)将代入一次函数中得:

将代入反比例函数中得:
∴反比例函数的表达式为;
(2)如图:
设点P的坐标为,则
∴,点O到直线的距离为m
∴的面积
解得:或或1或2
∵点P不与点A重合,且

又∵
∴或1或2
∴点P的坐标为或或.
12.
(1)设y与x的函数关系式为:y=(k≠0),
把P(144,0.5),代入得:0.5=,
解得:k=72,
∴y与x的函数解析式为:y=;
(2)当x=180时,y==0.4(万元),
答:则每月应还款0.4万元.
13.(1)把A(﹣4,2)代入,得m=2×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣2;
(2)y=﹣x﹣2中,令y=0,则x=﹣2,即直线y=﹣x﹣2与x轴交于点C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;
(3)由图可得,不等式的解集为:x<﹣4或0<x<2.
14.(1)反比例函数的图象过点,过点作轴的垂线,垂足为,面积为1,



故反比例函数的解析式为:;
(2)作点关于轴的对称点,连接,交轴于点,则最小.
由,解得,或,
,,
,最小值.
设直线的解析式为,
则,解得,
直线的解析式为,
时,,
点坐标为.
第二课时答案
一、单选题
B.D.D.B.C.
二、填空题
6.4
7.-1≤a≤
8.4
9.﹣2<x<0.
三、解答题
10.
(1)将点A(4,3)代入y=,得:k=12,
则反比例函数解析式为y=;
(2)如图,过点A作AC⊥x轴于点C,
则OC=4、AC=3,
∴OA==5,
∵AB∥x轴,且AB=OA=5,
∴点B的坐标为(9,3);
(3)∵点B坐标为(9,3),
∴OB所在直线解析式为y=x,
由可得点P坐标为(6,2),(负值舍去),
过点P作PD⊥x轴,延长DP交AB于点E,
则点E坐标为(6,3),
∴AE=2、PE=1、PD=2,
则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.
11.
(1)把点A(﹣1,a)代入y=x+4,得a=3,
∴A(﹣1,3)
把A(﹣1,3)代入反比例函数
∴k=﹣3,
∴反比例函数的表达式为
(2)联立两个函数的表达式得
解得

∴点B的坐标为B(﹣3,1)
当y=x+4=0时,得x=﹣4
∴点C(﹣4,0)
设点P的坐标为(x,0)
∵,

解得x1=﹣6,x2=﹣2
∴点P(﹣6,0)或(﹣2,0)
12.(1)将A(﹣3,m+8)代入反比例函数y=得,
=m+8,
解得m=﹣6,
m+8=﹣6+8=2,
所以,点A的坐标为(﹣3,2),
反比例函数解析式为y=﹣,
将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
解得n=1,
所以,点B的坐标为(1,﹣6),
将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,

解得,
所以,一次函数解析式为y=﹣2x﹣4;
(2)设AB与x轴相交于点C,
令﹣2x﹣4=0解得x=﹣2,
所以,点C的坐标为(﹣2,0),
所以,OC=2,
S△AOB=S△AOC+S△BOC,
=×2×2+×2×6,
=2+6,
=8.
13.(1)设线段AB解析式为y=k1x+b(k≠0)
∵线段AB过点(0,10),(2,14)
代入得
解得
∴AB解析式为:y=2x+10(0≤x<5)
∵B在线段AB上当x=5时,y=20
∴B坐标为(5,20)
∴线段BC的解析式为:y=20(5≤x<10)
设双曲线CD解析式为:y=(k2≠0)
∵C(10,20)
∴k2=200
∴双曲线CD解析式为:y=(10≤x≤24)
∴y关于x的函数解析式为:
(2)由(1)恒温系统设定恒温为20°C
(3)把y=10代入y=中,解得,x=20
∴20-10=10
答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
14.
解:(1)如图1,
过点A分别作轴于Q点,轴于N点,
是等腰直角三角形,

设点A的坐标为,
点A在直线上,

解得,
则点A的坐标为,
双曲线也经过A点,

(2)由(1)知,,

直线与y轴的交点为C,

,,

是直角三角形;
则S△ABC=AB·BC=;
(3)如图2,
假设双曲线上存在一点M,使得是等腰直角三角形;
,,
连接AM,BM,
由知,,
反比例函数解析式为,

在和中,

≌,


点M的横坐标为4,

即:在双曲线上存在一点,使得是以点A为直角顶点的等腰三角形.