人教版高中数学必修第二册第七章 复数 单元测试卷
考试时间:45分钟;满分100分
一、单项选择题(共10题,每小题5分,共50分)
1.已知复数(i是虚数单位),则下列说法正确的是( )
A.复数z的实部为5
B.复数z的虚部为
C.复数z的共轭复数为
D.复数z的模为
2.设复数z1=a+2i,z2=-2+i,且|z1|<|z2|,则实数a的取值范围是( )
A.(-∞,-1)∪(1,+∞) B.(-1,1)
C.(1,+∞) D.(0,+∞)
3.已知在复平面内,复数z对应的点是,则复数z的共轭复数( )
A. B. C. D.
4、已知复数 满足 z(1+i)=i,则复数 =( )
A、1+i B、1-i C、 D、
已知复数 和复数 ,则 为( )
B、
C 、 D、
若,求实数m的取值范围( )
(1,+) B、()
(—,2) D、()
7、设复数z=1+bi(b∈R),且z2=-3+4i,则z的共轭复数的虚部为( )
A.-2 B.2i
C.2 D.-2i
8、若复数z=+1为纯虚数,则实数a=( )
A.-2 B.-1
C.1 D.2
9、若复数z满足z(1-i)=|1-i|+i,则z的实部为( )
A. B.-1
C.1 D.
设zC,且,则的最小值为( )
A、0 B、1 C、 D、
二、多项选择题(共2题,每小题5分,全部选对得5分,选不全得3分,选错0分)
11、有下面四个命题,真命题的是
A:
B:若a,bR,且a>b,则a+i>b+i
C:,则x=y=0
D:两个虚数不能比较大小
12、对任意复数z=x+yi(x,yR),i为虚数单位,则下列结论错误的是( )
B、
C、 D、
三、填空题(共4题,每小题5分,共20分)
13、复平面内三点 A、B、C,点 A对应的复数 2+i, 对应的复数为 1+2i,向量 对应的复数为 3-i,求点 C对应的复数. ________
14、已知复数z1=-1+2i,z2=1-i,z3=3-4i,它们在复平面内对应的点分别为A,B,C,若=λ+μ (λ,μ∈R),则λ+μ的值是________.
15、________.
16、设复数z满足 _______.
四、解答题(每题10分,共20分.,解答应写出必要的文字说明、演算步骤)
17、已知复数 ,实数 取什么值时,
(1)复数 是实数; (2复数 是纯虚数;
(3)复数 对应的点位于第三象限.
18、
参考答案与解析
考试时间:45分钟;满分100分
一、单项选择题(共10题,每小题5分,共50分)
选D 解析: 的实部是-5,虚部是12,z的共轭复数为的模是13,所以选项A,B,C均错误.故选D.
2.选B 解析:∵|z1|=,|z2|=,
∴<,即a2+4<5,
∴a2<1,即-1
3.选D 解析:由复数的几何意义可知, ,则复数z的共轭复数,故选D.
4.选C解析: .
考点:复数的除法运算.
5.选A解析: 试题分析:∵ , ,∴
,故选A
6.选B解答:由题意知,,故解得所以实数m的取值范围为
7选A.解析: 由题意得z2=(1+bi)2=1-b2+2bi=-3+4i,∴∴b=2,故z=1+2i,=1-2i,虚部为-2.故选A.
8.选A解析: 因为复数z=+1=+1=+1-i为纯虚数,所以+1=0,且-≠0,解得a=-2.故选A.
9.选A解析: 由z(1-i)=|1-i|+i,得z===+i,故z的实部为,故选A.
10.选C解答:由知,在复平面内,复数z对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y=-x,而表示直线y=-x上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y=-x的距离,即为
二、多项选择题(共2题,每小题5分,全部选对得5分,选不全得3分,选错0分)
11.选AD解析:对于A,因为=-1,所以1+=0,故A正确。对于B,两个虚数不能比较大小,故B错。对于C当x=1,y=i时,故C错。D正确。所以答案是AD
12.选ABC解析:对于A,(x,yR),故不正确:对于B,,故不正确:对于C,不一定成立,故不正确:对于D,故正确,所以答案是ABC
三、填空题(共4题,每小题5分,共20分)
13.答案:4-2i 解析: 对应的复数是 , 对应的复数为 ,
对应的复数为 .
又 .
点 对应的得数为 .
14.答案:1
解析:由条件得=(3,-4),=(-1,2),=(1,-1),
根据=λ+μ,得
(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),
∴解得
∴λ+μ=1.
答案:1
15.答案;1解析:
16.答案:6解析:因为所以复数z所对应点在以C(3,4)为圆心,半径为1的圆上,由几何性质得的最大值是
四、解答题(每题10分,共20分.,解答应写出必要的文字说明、演算步骤)
已知复数 ,实数 取什么值时,
(1)复数 是实数; (2复数 是纯虚数; (3)复数 对应的点位于第三象限.
本试题主要是考查了复数的概念和几何意义的运用。
(1)因为 那么当 =0即m=3或m=6时,z为实数
(2)当 , 即m=5时,z为纯虚数
(3)当 即318.
解: