2023-2024学年北师大版九年级数学上册1.2矩形的性质与判定 同步练习题 (含答案)

文档属性

名称 2023-2024学年北师大版九年级数学上册1.2矩形的性质与判定 同步练习题 (含答案)
格式 docx
文件大小 222.1KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2023-08-18 16:12:39

图片预览

文档简介

2023-2024学年北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题(附答案)
一、选择题
1.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为(  )
A.6cm B.4cm C.2cm D.1cm
2.如图矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是(  )
A.2 B.4 C. D.
3.矩形具有而菱形不具有的性质是(  )
A.两组对边分别平行 B.对角线相等
C.对角线互相平分 D.两组对角分别相等
4.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为(  )
A.16 B.12 C.24 D.20
5.如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为(  )
A.1 B.2 C.3 D.4
6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是(  )
A.12 B.24 C.12 D.16
7.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是(  )
A.S1>S2 B.S1=S2 C.S1<S2 D.3S1=2S2
8.如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?(  )
A.20 B.35 C.40 D.55
9.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为(  )
A.cm2 B.cm2 C.5cm2 D.cm2
二、填空题
10.如图,若将四根木条钉成的矩形ABCD变形为 FBCE的形状,EF交CD于点H,已知AB=20cm,BC=30cm,当矩形ABCD的面积是 FBCE面积的2倍时,四边形FBCH的面积为   .
11.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为    .
12.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为   .
13.已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB=   时,四边形MENF是正方形(只写结论,不需证明)
14.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为   .
15.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=   用含k的代数式表示).
三、解答题
16.如图,将 ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.
(1)求证:△ABD≌△BEC;
(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.
17.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.
求证:四边形BECD是矩形.
18.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.
(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.
19.如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
20.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.
21.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.
(1)求证:△BEC≌△DFA;
(2)求证:四边形AECF是平行四边形.
22.如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.
(1)求证:OE=OF;
(2)若BC=2,求AB的长.
参考答案
一、选择题
1.解:∵沿AE对折点B落在边AD上的点B1处,
∴∠B=∠AB1E=90°,AB=AB1,
又∵∠BAD=90°,
∴四边形ABEB1是正方形,
∴BE=AB=6cm,
∴CE=BC﹣BE=8﹣6=2cm.
故选:C.
2.解:在矩形ABCD中,OC=OD,
∴∠OCD=∠ODC,
∵∠AOD=60°,
∴∠OCD=∠AOD=×60°=30°,
又∵∠ADC=90°,
∴AC=2AD=2×2=4.
故选:B.
3.解:A、矩形与菱形的两组对边都分别平行,故本选项错误;
B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;
C、矩形与菱形的对角线都互相平分,故本选项错误;
D、矩形与菱形的两组对角都分别相等,故本选项错误.
故选:B.
4.解:
∵四边形ABCD是矩形,AC=8,
∴AC=BD,AC=2AO,BD=2BO,
∴AO=BO=4,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴AB=AO=4,
∴△ABO的周长是4+4+4=12,
故选:B.
5.解:在矩形ABCD中,CD=AB,
∵矩形ABCD沿对角线BD折叠后点C和点C′重合,
∴C′D=CD,
∴C′D=AB,
∵AB=2,
∴C′D=2.
故选:B.
6.解:在矩形ABCD中,
∵AD∥BC,
∴∠B′EF=∠EFB=60°,
由折叠的性质得∠A=∠A′=90°,A′E=AE=2,AB=A′B′,∠A′EF=∠AEF=180°﹣60°=120°,
∴∠A′EB′=∠A′EF﹣∠B′EF=120°﹣60°=60°.
在Rt△A′EB′中,
∵∠A′B′E=90°﹣60°=30°,
∴B′E=2A′E,而A′E=2,
∴B′E=4,
∴A′B′=2,即AB=2,
∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面积=AB AD=2×8=16.
故选:D.
7.解:矩形ABCD的面积S=2S△ABC,而S△ABC=S矩形AEFC,即S1=S2,
故选:B.
8.解:∵分别以BC长、MC长为半径的两弧相交于P点,
∴BP=BC,MP=MC,
∵∠PBC=70°,
∴∠BCP=(180°﹣∠PBC)=(180°﹣70°)=55°,
在长方形ABCD中,∠BCD=90°,
∴∠MCP=90°﹣∠BCP=90°﹣55°=35°,
∴∠MPC=∠MCP=35°.
故选:B.
9.方法一:
解:设矩形ABCD的面积为S=20cm2,
∵O为矩形ABCD的对角线的交点,
∴平行四边形AOC1B底边AB上的高等于BC的,
∴平行四边形AOC1B的面积=S,
∵平行四边形AOC1B的对角线交于点O1,
∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,
∴平行四边形AO1C2B的面积=×S=,
…,
依此类推,平行四边形AO4C5B的面积===(cm2).
故选:B.
方法二:
q=,a1=10,
∴an=10 ,∴a5=10 =.
二、填空题
10.解:∵四边形ABCD是矩形,
∴DC⊥BC,
∵ FBCE中,EF∥BC,
∴DC⊥EF,
根据题意得:AB=CD=BF=CE,AD=BC=EF, FBCE面积=BC CH=BC AB,
∴CH=AB,
∵CE=BF=AB,
∴CH=CE,
∴∠E=30°,
∴EH=10cm,
∴FH=EF﹣HE=30﹣10,
∴四边形FBCH的面积=(FH+BC) CH=(30﹣10+30) 10=(300﹣50)cm2,
故答案为(300﹣50)cm2.
11.解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,
∴OM=CD=AB=2.5,
∵AB=5,AD=12,
∴AC==13,
∵O是矩形ABCD的对角线AC的中点,
∴BO=AC=6.5,
∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,
故答案为:20.
12.解:∵点E、F分别是AB、CD的中点,M、N分别为DE、BF的中点,
∴矩形绕中心旋转180°阴影部分恰好能够与空白部分重合,
∴阴影部分的面积等于空白部分的面积,
∴阴影部分的面积=×矩形的面积,
∵AB=2,BC=2,
∴阴影部分的面积=×2×2=2.
故答案为:2.
13.(1)证明:∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M为AD中点,
∴AM=DM,
在△ABM和△DCM,
∴△ABM≌△DCM(SAS);
(2)答:四边形MENF是菱形.
证明:∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,NE=CM,MF=CM,
∴NE=FM,NE∥FM,
∴四边形MENF是平行四边形,
由(1)知△ABM≌△DCM,
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形;
(3)解:当四边形MENF是正方形正方形时,则∠EMF=90°,
∵△ABM≌△DCM,
∴∠AMB=∠DMC=45°,
∴△ABM、△DCM为等腰直角三角形,
∴AM=DM=AB,
∴AD=2AB,
当AD:AB=2:1时,四边形MENF是正方形.
故答案为:2:1.
14.解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:
(1)如答图①所示,PD=OD=5,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE===3,
∴OE=OD﹣DE=5﹣3=2,
∴此时点P坐标为(2,4);
(2)如答图②所示,OP=OD=5.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△POE中,由勾股定理得:OE===3,
∴此时点P坐标为(3,4);
(3)如答图③所示,PD=OD=5,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE===3,
∴OE=OD+DE=5+3=8,
∴此时点P坐标为(8,4).
综上所述,点P的坐标为:(2,4)或(3,4)或(8,4);
故答案为:(2,4)或(3,4)或(8,4);
15.解:∵点E是边CD的中点,
∴DE=CE,
∵将△ADE沿AE折叠后得到△AFE,
∴DE=EF,AF=AD,∠AFE=∠D=90°,
∴CE=EF,
连接EG,
在Rt△ECG和Rt△EFG中,

∴Rt△ECG≌Rt△EFG(HL),
∴CG=FG,
设CG=a,
∵=,
∴GB=ka,
∴BC=CG+BG=a+ka=a(k+1),
在矩形ABCD中,AD=BC=a(k+1),
∴AF=a(k+1),
AG=AF+FG=a(k+1)+a=a(k+2),
在Rt△ABG中,AB===2a,
∴==.
故答案为:.
三、解答题
16.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.
又∵AB=BE,
∴BE=DC,
∴四边形BECD为平行四边形,
∴BD=EC.
∴在△ABD与△BEC中,

∴△ABD≌△BEC(SSS);
(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.
∵四边形ABCD为平行四边形,
∴∠A=∠BCD,即∠A=∠OCD.
又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,
∴∠OCD=∠ODC,
∴OC=OD,
∴OC+OB=OD+OE,即BC=ED,
∴平行四边形BECD为矩形.
17.证明:∵AB=BC,BD平分∠ABC,
∴BD⊥AC,AD=CD.
∵四边形ABED是平行四边形,
∴BE∥AD,BE=AD,
∴BE=CD,
∴四边形BECD是平行四边形.
∵BD⊥AC,
∴∠BDC=90°,
∴ BECD是矩形.
18.(1)证明:∵四边形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,AB∥CD,
∴∠ABD=∠CDB,
由折叠的性质可得:∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,
∴∠ABE=∠CDF,
在△ABE和△CDF中

∴△ABE≌△CDF(ASA),
∴AE=CF,
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∴DE=BF,DE∥BF,
∴四边形BFDE为平行四边形;
解法二:证明:∵四边形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,AB∥CD,
∴∠ABD=∠CDB,
∴∠EBD=∠FDB,
∴EB∥DF,
∵ED∥BF,
∴四边形BFDE为平行四边形.
(2)解:∵四边形BFDE为菱形,
∴BE=ED,∠EBD=∠FBD=∠ABE,
∵四边形ABCD是矩形,
∴AD=BC,∠ABC=90°,
∴∠ABE=30°,
∵∠A=90°,AB=2,
∴AE==,BE=2AE=,
∴BC=AD=AE+ED=AE+BE=+=2.
19.证明:(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,
∵BE=CF,BF=BC﹣FC,CE=BC﹣BE,
∴BF=CE,
在△ABF和△DCE中,,
∴△ABF≌△DCE(SAS);
(2)∵△ABF≌△DCE,
∴∠BAF=∠EDC,
∵∠DAF=90°﹣∠BAF,∠EDA=90°﹣∠EDC,
∴∠DAF=∠EDA,
∴△AOD是等腰三角形.
20.证明:连接DE.
∵AD=AE,
∴∠AED=∠ADE.
∵有矩形ABCD,
∴AD∥BC,∠C=90°.
∴∠ADE=∠DEC,
∴∠DEC=∠AED.
又∵DF⊥AE,
∴∠DFE=∠C=90°.
∵DE=DE,
∴△DFE≌△DCE.
∴DF=DC.
21.证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,
又∵E、F分别是边AB、CD的中点,
∴BE=DF,
∵在△BEC和△DFA中,

∴△BEC≌△DFA(SAS).
(2)由(1)得,CE=AF,AD=BC,
故可得四边形AECF是平行四边形.
22.(1)证明:在矩形ABCD中,AB∥CD,
∴∠BAC=∠FCO,
在△AOE和△COF中,

∴△AOE≌△COF(AAS),
∴OE=OF;
(2)解:如图,连接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∵BC=2,
∴AC=2BC=4,
∴AB===6.