课件14张PPT。对数的概念与运算(第二课时)一般地,如果 的b次幂等于N, 就是 ,那么数 b叫做以a为底 N的对数,记作 a叫做对数的底数,N叫做真数。定义:复习上节内容例如: 复习上节内容有关性质: ⑴负数与零没有对数(∵在指数式中 N > 0 ) ⑵ ⑶对数恒等式复习上节内容⑷常用对数: 我们通常将以10为底的对数叫做常用对数。 为了简便,N的常用对数 简记作lgN。 ⑸自然对数: 在科学技术中常常使用以无理数e=2.71828……为底的对数,以e为底的对数叫自然对数。 为了简便,N的自然对数 简记作lnN。 (6)底数a的取值范围: 真数N的取值范围 :复习上节内容新授内容: 积、商、幂的对数运算法则:如果 a > 0,a ? 1,M > 0, N > 0 有:为了证明以上公式,请同学们回顾一下指数运算法则 :证明:①设 由对数的定义可以得: ∴MN= 即证得 证明:②设 由对数的定义可以得: ∴ 即证得 证明:③设 由对数的定义可以得: ∴即证得 上述证明是运用转化的思想,先通过假设,将对数
式化成指数式,并利用幂的运算性质进行恒等变形;
然后再根据对数定义将指数式化成对数式。①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式 ③真数的取值范围必须是 ④对公式容易错误记忆,要特别注意:例4求下列各式的值例5已知 求下列各式的值
练习:P601用 表示下列各式今日作业:课堂作业:
书本P60 练习2,3,4
课后作业:
评价手册P51例1,2 练习1~5