人教A版高中数学必修二 第十章概率复习课 作业(含解析)

文档属性

名称 人教A版高中数学必修二 第十章概率复习课 作业(含解析)
格式 docx
文件大小 75.5KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2023-08-21 21:12:01

图片预览

文档简介

人教A版高中数学必修二 第十章概率复习课 作业1
1.任意抛两枚一元硬币,记事件A=“恰好一枚正面朝上”;B=“恰好两枚正面朝上”;C=“恰好两枚正面朝下”;D=“至少一枚正面朝上”;E=“至多一枚正面朝上”,则下列事件为对立事件的是(  )
A.A与B B.C与D
C.B与C D.C与E
2.某人忘了电话号码的最后一个数字,因而他随意拨号,假设拨过的号码不再重复,若用Ai=“第i次拨号接通电话”,i=1,2,3.则事件第3次拨号才接通电话可表示为    ,拨号不超过3次而接通电话可表示为    .
3.
甲、乙、丙三人参加某电视台的一档节目,他们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如图),每次只能从其中一串的最下端取一件,直到礼物取完为止.甲第一个取得礼物,然后,乙、丙依次取得第2件、第3件礼物.事后他们打开这些礼物仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是    .
4.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=(  )
A. B. C. D.
5.某医院一天要派出医生下乡义诊,派出的医生人数及其概率如下表所示:
人数 0 1 2 3 4 5人及5人以上
概率 0.1 0.16 0.3 0.2 0.2 0.04
(1)求派出医生至多2人的概率;
(2)求派出医生至少2人的概率.
答案:
1.
答案B
解析在A中,A与B不能同时发生,但能同时不发生,是互斥但不对立事件,故A错误;在B中,C与D不能同时发生,也不能同时不发生,是对立事件,故B正确;在C中,B与C不能同时发生,但能同时不发生,是互斥但不对立事件,故C错误;在D中,C与E能同时发生,不是互斥事件,故D错误.
2.
答案 A3 A1∪A2∪A3
3.
答案丙
解析取得礼物,共有三种情况,
(1)甲C,乙A,丙B;(2)甲A,乙B,丙C;(3)甲A,乙C,丙B.
可见,取得礼物B可能性最大的是丙.
4.
答案C
解析∵抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,
∴P(A)=,P(B)=,P(AB)=,
P(A∪B)=P(A)+P(B)-P(AB)=.故选C.
5.
解设“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件E,“派出5名及5名以上医生”为事件F,事件A,B,C,D,E,F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.
(1)“派出医生至多2人”的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)方法一 “派出医生至少2人”的概率为P(C∪D∪E∪F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.
方法二 “派出医生至少2人”的概率为1-P(A∪B)=1-0.1-0.16=0.74.
人教A版高中数学必修二 第十章概率复习课 作业2
1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是(  )
A. B. C. D.
2.在1,3,4,5,8路公共汽车都要停靠的一个站(假定这个站一次只能停靠一辆汽车),有一位乘客等候4路或8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于(  )
A. B. C. D.
3.
《易经》是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、離、艮、兑八卦),每一卦由三根线组成(—表示一根阳线,— —表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为(  )
A. B. C. D.
4.种植两株不同的花卉,若它们的成活率分别为p和q,则恰有一株成活的概率为(  )
A.pq B.p+q
C.p+q-pq D.p+q-2pq
5.在某道路A,B,C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒.某辆车在这条道路上匀速行驶,则三处都不停车的概率为(  )
A. B. C. D.
6.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗卫星预报准确的概率是    .
7.甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负.则一次游戏中甲胜出的概率是    .
8.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率.
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一所学校的概率.
9.甲、乙二人进行一次围棋比赛,一共赛5局,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.
(1)求再赛2局结束这次比赛的概率;
(2)求甲获得这次比赛胜利的概率.
答案:
1.
答案B
解析从1,2,3,4中任取2个不同的数有以下六种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足取出的2个数之差的绝对值为2的有(1,3),(2,4),故所求概率是.
2.
答案D
解析由题知,在该问题中基本事件总数为5,这位乘客等候的汽车首先到站这个事件包含2个基本事件,故所求概率为.
3.
答案C
解析从八卦中任取一卦,基本事件总数n=8,
这一卦的三根线中恰有2根阳线和1根阴线包含的基本事件个数m=3,∴所求概率为P=.故选C.
4.
答案D
解析恰有一株成活的概率为p(1-q)+(1-p)q=p+q-2pq.
5.
答案C
解析由题意可知,每个交通灯开放绿灯的概率分别为.在这条道路上匀速行驶,则三处都不停车的概率为.
6.
答案0.902
解析设甲、乙、丙预报准确依次记为事件A,B,C,不准确记为事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P()=0.2,P()=0.3,P()=0.1,至少两颗预报准确的事件有AB,AC,BC,ABC,这四个事件两两互斥.
∴至少两颗卫星预报准确的概率为
P=P(AB)+P(AC)+P(BC)+P(ABC)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.
7.
答案
解析一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为.
8.
解(1)甲校2名男教师分别用A,B表示,1名女教师用C表示;乙校1名男教师用D表示,2名女教师分别用E,F表示.
从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.
从中选出2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,
所以选出的2名教师性别相同的概率为P=.
(2)从甲校和乙校报名的6名教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.
从中选出2名教师来自同一所学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种,
所以选出的2名教师来自同一所学校的概率为P=.
9.
解记Ai表示事件“第i局甲获胜”,i=3,4,5,
Bj表示事件“第j局乙获胜”,j=3,4,5.
(1)记A表示事件“再赛2局结束比赛”.
A=(A3A4)∪(B3B4).
由于各局比赛结果相互独立,故
P(A)=P((A3A4)∪(B3B4))=P(A3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4)=0.6×0.6+0.4×0.4=0.52.
(2)记事件B表示“甲获得这次比赛的胜利”.
因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而B=(A3A4)∪(B3A4A5)∪(A3B4A5),由于各局比赛结果相互独立,故P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)
=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.