22.1.1 二次函数
知识点:1.二次函数的定义:一般地,形如 的函数,叫做二次函数,其中是 ,分别是函数表达式的 , , 。
2.当时,这个函数还是二次函数吗?为什么?或能为0吗?
选择题
下列各式中表示二次函数的是( )
B. C. D
2.国家决定对某药品价格分两次降价,若设平均每次降价的百分比为,该药品的原价为36元,降价后的价格为元,则与之间的函数关系为( )
A. B. C. D.
3.下列函数中:(1) ; (2) ;(3) ; (4) .不是二次函数的是( )
A. (1)(2) B. (3)(4) C. (1)(3) D. (2)(4)
4. 若是关于的二次函数,则( )
A. B. C. D.
5.若函数,则当函数值时,自变量的值是( )
B. C. D.
6.适合解析式的一对值是( )
(1,0) B. (0,0) C. (0,-1) D. (1,1)
二.填空题
二次函数中,二次项系数是 ,一次项系数是 。
把化成的形式后为 ,其一次项系数与常数项的和为 。
若与成正比例,当则的函数关系式为 。
矩形的边长分别为2cm和3cm,若每边长都增加,则面积增加,则的函数关系式为 。
当常数 时,函数是二次函数:当常数= 时,这个函数是一次函数。
从地面竖直向上抛出一个小球,小球的高度(单位:m)与小球的运动时间(单位:)之间的关系式为,那么小球从抛出至回落到地面所需的时间是 。
7.如图,在直角梯形中,,则四边形的面积之间的函数关系式为 ,
自变量的取值范围是 。
8.教练对小明推铅球的录像进行技术分析,发现铅球行进高度与水平距离之间的关系式为,由此可知铅球推出的距离是 。
解答题
1.已知二次函数,当时,,求这个二次函数的解析式.
2.已知函数是二次函数,求的值,并指出二次项系数,一次项系数及常数项.
3.已知函数,是常数.
(1)若这个函数是一次函数,求的值;
(2)若这个函数是二次函数,求的值。
4.汽车在行驶中,由于惯性作用刹车后还要向前滑行一段路程才能停止,我们称这段路程为
“刹车距离”。已知某种汽车的刹车距离与车速之间有如下关系:,当司机小张以的速度行驶时,发现前方大约处有一障碍物阻塞了道路,于是小张紧急刹车,问汽车是否撞到障碍物?
5.如图,用长为30米的篱笆围成一个一边靠墙的矩形养鸡场ABCD,已知墙长14m,设边AD的长为(m),矩形ABCD的面积为.(1)求之间的函数关系式及自变量的取值范围;(2)当时,求的值。
22.1.1 二次函数
知识点:, 自变量 ,二次项系数,一次项系数,常数项.
一.选择题 1.B 2.D 3. B 4. D 5. D 6. A
二.填空题1. 2. 3. 4. 5. 6. 7. , 8. 10
22.1.2二次函数的图象和性质
知识点:1.列表,描点,连线
2.抛物线,a的正负,
3.y轴 (0,0) 上 最低点 小 下 最高点 大
选择题
1.D 2.B 3.B 4.B 5.B 6.C 7.C 8.D
二.填空题
1.y轴(x=0) (0,0) 上 小值 0
2.y轴(x=0) (0,0) 下 大值 0
3. > 4. 5. ④ 6.1 7 .①③② 8.(-1,1)和(2,4)
0 10.
解答题
22.1.1 二次函数
一、学习目标:
1.知道二次函数的一般表达式;
2.能列二次函数表达式.
二、自主学习
知识准备:什么叫做函数?
阅读课本P28,解决以下问题:
正方体的六个面是全等的正方形,高正方体的棱长为x,表面积为y.对么,
y= .
2、n 个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n的关系为:m= .
即 m= .
某种产品一在的年产量是20t ,计划今后两年增加产量。如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值面确定,此时
y= .
以上 三个函数都有哪些共同点?
一般地,形如_________ ________(a、b、c是常数,a≠0)的函数,叫做二次函数。其中x是________,a是__________,b是___________,c是_____________.
三、课堂训练
1.观察:①y=6x2;②y=-x2+30x;③y=200x2+400x+200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y=ax2+bx+c(a、b、c是常数,a≠0),那么y叫做x的_____________.
2.函数y=(m-2)x2+mx-3(m为常数).
(1)当m__________时,该函数为二次函数;
(2)当m__________时,该函数为一次函数.
3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.
(1)y=1-3x2 (2)y=3x2+2x (3)y=x (x-5)+2
(4)y=3x3+2x2 (5)y=x+
4.y=(m+1)x-3x+1是二次函数,则m的值为_________________.
5.下列函数中是二次函数的是( )
A.y=x+ B. y=3 (x-1)2 C.y=(x+1)2-x2 D.y=-x
6.在一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为
s=5t2+2t,则当t=4秒时,该物体所经过的路程为( )
A.28米 B.48米 C.68米 D.88米
7.已知y与x2成正比例,并且当x=-1时,y=-3.
求:(1)函数y与x的函数关系式;
(2)当x=4时,y的值;
(3)当y=-时,x的值.
8.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地
上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的
栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.
求y与x之间的函数关系式,并写出自变量x的取值范围.
9、(P29。1)一个圆柱的高等于底面半径,写出它的表面积S与底面半径r之间的关系式。
10、(P29.2)如图,矩形绿地的长、宽各增加xm,写出扩充后的绿地的面积y与x的关系式。
六、目标检测
1.若函数y=(a-1)x2+2x+a2-1是二次函数,则( )
A.a=1 B.a=±1 C.a≠1 D.a≠-1
2.下列函数中,是二次函数的是( )
A.y=x2-1 B.y=x-1 C.y= D.y=
3.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.
4.已知二次函数y=-x2+bx+3.当x=2时,y=3,求 这个二次函数解析式.
22.1 二次函数的图象和性质
教学时间
课题
22.1 二次函数的图象和性质
课型
新授课
教
学
目
标
知 识
和
能 力
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围
过 程
和
方 法
注重学生参与,联系实际,丰富学生的感性认识
情 感
态 度
价值观
培养学生的良好的学习习惯
教学重点
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学难点
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
AB长x(m)
1
2
3
4
5
6
7
8
9
BC长(m)
12
面积y(m2)
48
2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?
在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x (0<x<10)……………………………(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:
y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?
(分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点?
让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
作业
设计
必做
教科书P14:1、2
选做
教科书P14:7
教学
反思
课件15张PPT。22.1 二次函数的图象和性质(第1课时)本课是在学生已经学习了一次函数的基础上,继续进行函数的学习,学习二次函数的定义,这是对函数知识的完善与提高.课件说明学习目标:通过对实际问题的分析,体会二次函数的意义.
学习重点:理解二次函数的定义. 课件说明 观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?1.由实际生活引入二次函数 正方体的棱长为 x ,那么正方体的表面积 y 与 x 之间有什么关系? 2.通过实例,归纳二次函数的定义 n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数 m 与球队数 n 有什么关系?2.通过实例,归纳二次函数的定义 某种产品现在的年产量是 20 t ,计划今后两年增加产量.如果每一年都比上一年的产量增加 x 倍,那么两年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示? 2.通过实例,归纳二次函数的定义 这三个函数关系式有什么共同点? 2.通过实例,归纳二次函数的定义 二次函数的定义:一般地,形如
(a ,b ,c 是常数,a≠0)
的函数,叫做二次函数.其中, x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.2.通过实例,归纳二次函数的定义 例 某小区要修建一块矩形绿地,设矩形的长为 x m,宽为 y m,面积为 S m 2(x>y).
(1)如果用 18 m 的建筑材料来修建绿地的边缘(即周长),求 S 与 x 的函数关系,并求出 x 的取值范围.
(2)根据小区的规划要求, 所修建的绿地面积必须是 18 m 2,在满足(1)的条件下,矩形的长和宽各为多少 m ? 3.练习、巩固二次函数的定义3.练习、巩固二次函数的定义解:(1)由题意,得 .
∵ x>y>0,
∴ x 的取值范围是 <x<9,
∴ (2)当矩形面积 S矩形 = 18 时,即
- x 2 + 9x = 18,
解得 x1 = 3,x2 = 6.
当 x = 3 时,y = 9 - 3 = 6,但 y>x ,不合题意,舍去.
当 x = 6 时,y = 9 - 6 = 3.
所以当绿地面积为 18 m 2 时,矩形的长为 6 m ,宽为 3 m.3.练习、巩固二次函数的定义 练习1 函数 (m 为常数).
(1)当 m ______时,这个函数为二次函数;
(2)当 m ______时,这个函数为一次函数.≠ 2= 23.练习、巩固二次函数的定义 练习2 填空:
(1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是_________;
(2) n 支球队参加比赛,每两队之间进行两场比赛,则比赛场次数 m 与球队数 n 之间的关系式是________________.S = 4πr 23.练习、巩固二次函数的定义 (1)一个函数是否为二次函数的关键是什么? (2)实际问题中列二次函数解析式需要考虑什么? 4.小结22.1.2 二次函数的图象和性质(三)
知识点:1、抛物线的对称轴为 ,顶点坐标为 。
2、抛物线与抛物线的形状 ,位置 ,将抛物线进行平移可得到抛物线,平移规律为:
当时,将抛物线 得到抛物线
;
当时,将抛物线 得到抛物线
;
当时,将抛物线 得到抛物线
;
当时,将抛物线 得到抛物线
;
3、抛物线的图象特点:
时,抛物线开口向 ,左 右 ,顶点最 ;
时,抛物线开口向 ,左 右 ,顶点最 ;
一、选择题:
1、抛物线的顶点坐标为( )
A、(-1,) B、(1,) C、(-1,—) D、(1,—)
2、对于的图象,下列叙述正确的是( )
A、顶点坐标为(-3,2) B、对称轴是直线
C、当时,随的增大而增大 D、当时,随的增大而减小
3、将抛物线向右平移一个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为( )
A、 B、 C、 D、
4、抛物线可由抛物线平移得到,则下列平移过程正确的是( )
A、先向右平移1个单位,再向上平移2个单位
B、先向右平移1个单位,再向下平移2个单位
C、先向左平移1个单位,再向上平移2个单位
D、先向左平移1个单位,再向下平移2个单位
5、如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是( )
A、y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1
6、设A(-1,)、B(1,)、C(3,)是抛物线上的三个点,则、、的大小关系是( )
A、<< B、<< C、<< D、<<
7、若二次函数.当≤l时,随的增大而减小,则的取值范围是( )
A.=l B.>l C.≥l D.≤l
8、二次函数的图象如图所示,则一次函数的图象经过( )
A、第一、二、三象限 B、第一、二、四象限
C、第二、三、四象限 D、第一、三、四象限
二、填空题:
1、抛物线的对称轴是 ,顶点坐标是 ;当 时,随的增大而增大,当 时,随的增大而减小,当 时,取最 值为 。
2、抛物线的顶点在第三象限,则有满足 0, 0。
3、已知点A(,)、B(,)在二次函数的图象上,若,则 (填“>”、“<”或“=”).
4、抛物线的顶点坐标为P(2,3),且开口向下,若函数值随自变量的增大而减小,那么的取值范围为 。
5、在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为 。
6、将抛物线先沿轴方向向 移动 个单位,再沿轴方向向 移动 个单位,所得到的抛物线解析式是。
7、将抛物线先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是 。
8、将抛物线绕其顶点旋转180°后得到抛物线的解析式为 ;
将抛物线绕原点旋转180°后得到抛物线的解析式为 。
9、抛物线的顶点为(3,-2),且与抛物线的形状相同,则
,= ,= 。
10、如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是 。
三、解答题:
1、若二次函数图象的顶点坐标为(-1,5),且经过点(1,2),求出二次函数的解析式。
2、若抛物线经过点(1,1),并且当时,有最大值3,则求出抛物线的解析式。
3、已知:抛物线y=(x-1)2-3.
(1)写出抛物线的开口方向、对称轴;
(2)函数y有最大值还是最小值?并求出这个最大(小)值;
(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.
4、在直角坐标系中,二次函数图象的顶点为A(1、-4),且经过点B(3,0)
(1)求该二次函数的解析式;
(2)当时,函数值y的增减情况;
(3)将抛物线怎样平移才能使它的顶点为原点。
5、如图是二次函数的图象,其顶点坐标为M(1,-4)
(1)求出图象与x轴的交点A、B的坐标;
(2)在二次函数的图象上是否存在点P,使,若存在,求出点P的坐标;若不存在,请说明理由。
22.1.2二次函数的图像和性质
一、理解新知
1、直线x=h (h,k) 2、相同 不同 向右平移h个单位,再向上平移k个单位;
向右平移h个单位,再向下平移|k|个单位;向左平移|h|个单位,再向上平移k个单位;
向左平移|h|个单位,再向下平移|k|个单位。
3、上 减 增 低;下 增 减 高
二、知识巩固练习:
(一)选择:
1、B 2、C 3、B 4、D 5、C 6、C 7、C 8、C
(二)填空:
1、直线x=-3 (-3,-1) <-3 >-3 大 -1
2、>0 <0 3、> 4、 5、18
6、右 3 上 1 7、
8、
9、 3 -2 10、①
(三)解答:
22.1.2 二次函数y=ax2的图象与性质
一、学习目标:
1.知道二次函数的图象是一条抛物线;2.会画二次函数y=ax2的图象;3.掌握二次函数y=ax2的性质,并会灵活应用.
二、自我尝试:
画二次函数y=x2的图象.
【提示:画图象的一般步骤:①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】
列表:
x
…
-3
-2
-1
0
1
2
3
…
y=x2
…
…
描点,并连线
由图象可得二次函数y=x2的性质:
1.二次函数y=x2是一条曲线,把这条曲线叫做______________.
2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.
3.自变量x的取值范围是____________.
4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.
5.抛物线y=x2与它的对称轴的交点( , )叫做抛物线y=x2的_________.
因此,抛物线与对称轴的交点叫做抛物线的_____________.
6.抛物线y=x2有____________点(填“最高”或“最低”) .
三、模仿例题
1、例1 在同一直角坐标系中,画出函数y=x2, y=2x2的图象.
解:列表并填:
x
…
-4
-3
-2
-1
0
1
2
3
4
…
y=x2
…
…
y=x2的图象刚画过,再把它画出来.
x
…
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
…
y=2x2
…
…
归纳:抛物线y=x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;
对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”) .
2、在上图,完成课本探究: 画出函数y=-x2,y=-x2, y=-2x2的图象.
列表:
x
…
-3
-2
-1
0
1
2
3
…
y=-x2
…
…
x
…
-4
-3
-2
-1
0
1
2
3
4
…
y=-x2
…
…
x
…
-4
-3
-2
-1
0
1
2
3
4
…
y=-2x2
…
…
归纳:抛物线y=-x2,y=-x2, y=-2x2的二次项系数a______0,顶点都是________,
对称轴是___________,顶点是抛物线的最________点(填“高”或“低”) .
四、理一理
1.抛物线y=ax2的性质
图象(草图)
开口
方向
顶点
对称轴
有最高或最低点
最值
a>0
当x=____时,y有最_______值,是______.
a<0
当x=____时,y有最_______值,是______.
2.抛物线y=x2与y=-x2关于________对称,因此,抛物线y=ax2与y=-ax2关于_______
对称,开口大小_______________.
3.当a>0时,a越大,抛物线的开口越___________;
当a<0时,|a| 越大,抛物线的开口越_________;
因此,|a| 越大,抛物线的开口越________,反之,|a| 越小,抛物线的开口越________.
五、练一练
1.填表:
开口方向
顶点
对称轴
有最高或最低点
最值
y=x2
当x=____时,y有最_______值,是______.
y=-8x2
2.若二次函数y=ax2的图象过点(1,-2),则a的值是___________.
3.二次函数y=(m-1)x2的图象开口向下,则m____________.
4.如图, ① y=ax2
② y=bx2
③ y=cx2
④ y=dx2
比较a、b、c、d的大小,用“>”连接.
___________________________________
5、(课本p32)说出下列抛物线的开口方向、对称轴和顶点:
(1)y=3x2 (2)y=-3x2 (3)y=1/3x2 (4)y=-1/3x2
七、目标检测
1.函数y=x2的图象开口向_______,顶点是__________,对称轴是________,
当x=___________时,有最_________值是_________.
2.二次函数y=mx有最低点,则m=___________.
3.二次函数y=(k+1)x2的图象如图所示,则k的取值
范围为___________.
4.写出一个过点(1,2)的函数表达式_________________.
22.1 二次函数的图象和性质
教学时间
课题
22.1 二次函数的图象和性质
课型
新授课
教
学
目
标
知 识
和
能 力
使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
过 程
和
方 法
使学生经历、探索二次函数y=ax2图象性质的过程
情 感
态 度
价值观
培养学生观察、思考、归纳的良好思维习惯
教学重点
使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
教学难点
用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、提出问题
1,同学们可以回想一下,一次函数的性质是如何研究的?
(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)
2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?
(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)
3.一次函数的图象是什么?二次函数的图象是什么?
二、范例
例1、画二次函数y=x2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点
(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?
让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.
三、做一做
1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?
2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?
3.将所画的四个函数的图象作比较,你又能发现什么?
在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
四、归纳、概括
函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:
函数y=ax2的图象是一条________,它关于______对称,它的顶点坐标是______。
如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?
让学生观察y=x2、y=2x2的图象,填空;
当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
图象的这些特点反映了函数的什么性质?
先让学生观察下图,回答以下问题;
(1)XA、XB大小关系如何?是否都小于0?
(2)yA、yB大小关系如何?
(3)XC、XD大小关系如何?是否都大于0?
(4)yC、yD大小关系如何?
(XAyB;XC0,XD>0,yC 其次,让学生填空。
当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______
以上结论就是当a>0时,函数y=ax2的性质。
思考以下问题:
观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a 让学生讨论、交流,达成共识,当aO时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。
作业
设计
必做
教科书P14:3、4
选做
教科书P14:8
教学
反思
课件13张PPT。22.1 二次函数的图象和性质(第2课时)本节课由最特殊最简单的二次函数出发,通过类比一次函数的图象和性质的研究内容和研究方法,从特殊到一般地对二次函数的图象和性质进行探究,继续加深对函数的一般性认识.课件说明学习目标:
1.会用描点法画出形如 y = ax 2 的二次函数图象,了 解抛物线的有关概念;
2.通过观察图象,能说出二次函数 y = ax 2 的图象特
征和性质;
3.在类比探究二次函数 y = ax 2 的图象和性质的过程 中,进一步体会研究函数图象和性质的基本方法 和数形结合的思想.
学习重点:
观察图象,得出二次函数 y = ax 2 的图象特征和性质.课件说明 问题1
你认为我们应该如何研究函数的图象和性质?1.复习研究函数的一般方法2.类比探究二次函数 y = ax 2 的图象和性质 问题2
类比一次函数的研究内容和研究方法,画出二次函数 y = x 2 的图象,你能说说它的图象特征和性质吗? 问题3
在同一直角坐标系中,画出函数 ,
的图象,这两个函数的图象与函数 y = x 2 的图象相比, 有什么共同点?有什么不同点?当 a>0 时,二次函数 y = ax 2 的图象有什么特点?2.类比探究二次函数 y = ax 2 的图象和性质 问题4
类比 a>0 时的研究过程,画图研究当 a<0 时,二次函数 y = ax 2 的图象特征.2.类比探究二次函数 y = ax 2 的图象和性质 问题5
你能说出二次函数 y = ax 2 的图象特征和性质吗?2.类比探究二次函数 y = ax 2 的图象和性质 归纳:
一般地, 抛物线 y = ax 2 的对称轴是 y 轴, 顶点是原点.
当 a>0 时, 抛物线开口向上,顶点是抛物线的最低点;
当 a<0 时, 抛物线开口向下,顶点是抛物线的最高点.
对于抛物线 y = ax 2 ,|a|越大,抛物线的开口越小.2.类比探究二次函数 y = ax 2 的图象和性质 归纳:
如果 a>0,当 x<0 时,y 随 x 的增大而减小,当 x>0 时,y 随 x 的增大而增大;
如果 a<0,当 x<0 时,y 随 x 的增大而增大,当 x>0 时,y 随 x 的增大而减小.2.类比探究二次函数 y = ax 2 的图象和性质 说出下列抛物线的开口方向、对称轴和顶点:
(1) ;
(2) ;
(3) ;
(4) .3.巩固练习开口向上、y 轴、原点.开口向下、y 轴、原点.开口向上、y 轴、原点.开口向下、y 轴、原点. 抛物线 ,其对称轴左侧,y 随 x 的增大而 ;在对称轴的右侧,y 随 x 的增大而 .增大减小3.巩固练习 (1)本节课学了哪些主要内容?
(2)本节课是如何研究二次函数 y = ax 2 的图象和性质的?4.小结22.1.3 二次函数的图象和性质(二)
知识点:抛物线的特点有:
当时,开口向 ;当时,开口向 。
对称轴是 ,顶点坐标是 。
当时,在对称轴的左侧(),随的 ,在对称轴的右侧(),随的 ;当时,在对称轴的左侧(),随的 ,在对称轴的右侧(),随的 。
当 时,函数的值最大(或最小),是 。
选择题
把二次函数的图象向右平移3个单位长度,得到新的图象的函数表达式是( )
B. C. D.
抛物线的顶点坐标和对称轴分别是( )
B.
C. D.
已知二次函数的图象上有三点 ,则的大小关系为( )
A. B. C. D.
把抛物线的图象平移后得到抛物线的图象,则平移的方法可以是( )
沿轴向上平移1个单位长度
沿轴向下平移1个单位长度
沿轴向左平移1个单位长度
沿轴向右平移1个单位长度
若二次函数的图象的顶点在轴上,则的值是( )
A. B. C. D.
对称轴是直线的抛物线是( )
A. B. C. D.
对于函数,下列说法正确的是( )
当时,随的增大而减小
B. 当时,随的增大而增大
C. 当时,随的增大而增大
D. 当时,随的增大而减小
二次函数和,以下说法:①它们的图象都是开口向上;
②它们的对称轴都是轴,顶点坐标都是原点(0,0);
③当时,它们的函数值都是随着的增大而增大;
④它们的开口的大小是一样的.
其中正确的说法有( )
A.1个 B.2个 C.3个 D.4个
填空题
抛物线的开口向 ,对称轴是 ,顶点坐标是 。
当 时,函数随的增大而增大,当 时,随的增大而减小。
若抛物线的对称轴是直线,且它与函数的形状相同,开口方向相同,则 , 。
抛物线的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线向 平移 个单位长度得到的。
抛物线 向右平移3个单位长度即得到抛物线。
已知三点都在二次函数的图象上,则的大小关系为 。
顶点是,且抛物线的形状、开口方向都相同的抛物线的解析式为 。
对称轴为,顶点在轴上,并与轴交于点(0,3)的抛物线解析式为
解答题
1.抛物线 经过点.
(1)确定的值;
(2)求出该抛物线与坐标轴的交点坐标.
2.已知二次函数,当时有最大值,且此函数的图象经过点,求此二次函数的解析式,并指出当为何值时,随的增大而增大?
3.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.
(1)求抛物线的解析式;
(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l 求l与t之间函数关系式.
22.1.3 二次函数的图象和性质(二)
课前思考:(1)上 下(2)直线 (h,0) (3)增大而减小 增大而增大 增大而增大 增大而减小 (4)=h 0
选择题
D 2.B 3. B 4.D 5.D 6.C 7.C 8.B
填空题
1.下 (1,0) 2.x<-3 x>-3
3. 3 -1 4.上 (5,0)右 5
5. 6. 7.
8.
解答题
22.1.3.1 二次函数y=ax2+k的图象与性质
一、学习目标:
1.会画二次函数y=ax2+k的图象;
2.掌握二次函数y=ax2+k的性质,并会应用;
3.知道二次函数y=ax2与y=的ax2+k的联系.
三、自我尝试:
在同一直角坐标系中,画出二次函数y=x2+1,y=x2-1的图象.
解:先列表
x
…
-3
-2
-1
0
1
2
3
…
y=x2+1
…
…
y=x2-1
…
…
描点并画图
观察图象得:
1.
开口方向
顶点
对称轴
有最高(低)点
最值
y=x2
y=x2-1
y=x2+1
2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.
3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.
三、理一理
1.
y=ax2
y=ax2+k
开口方向
顶点
对称轴
有最高(低)点
最值
a>0时,当x=______时,y有最____值为________;
a<0时,当x=______时,y有最____值为________.
增减性
2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;
抛物线y=2x2向下平移4个单位,就得到抛物线__________________.
因此,把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;
把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.
3.抛物线y=-3x2与y=-3x2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y=ax2与y=ax2+k的形状__________________.
四、练一练
1.填表
函数
草图
开口方向
顶点
对称轴
最值
对称轴右侧的增减性
y=3x2
y=-3x2+1
y=-4x2-5
2.将二次函数y=5x2-3向上平移7个单位后所得到的抛物线解析式为_________________.
3.写出一个顶点坐标为(0,-3),开口方向与抛物线y=-x2的方向相反,形状相同的抛
物线解析式____________________________.
4.抛物线y=4x2+1关于x轴对称的抛物线解析式为______________________.
5、(课本p33练习)在同一坐标系中,画出下列二次函数的图象:
y=1/2x2 , y=1/2x2+2, y=1/2x2-2
观察三条抛物线的位置关系,并分别指出它们的开口方向、对称轴和顶点。你能说出抛物线y=1/2x2+k的开口方向、对称轴和顶点吗?它与抛物线y=1/2x2有什么关系?
六、目标检测
1.填表
函数
开口方向
顶点
对称轴
最值
对称轴左侧的增减性
y=-5x2+3
y=7x2-1
2.抛物线y=-x2-2可由抛物线y=-x2+3向___________平移_________个单位得到的.
3.抛物线y=-x2+h的顶点坐标为(0,2),则h=_______________.
4.抛物线y=4x2-1与y轴的交点坐标为_____________,与x轴的交点坐标为_________.
22.1 二次函数的图象和性质
教学时间
课题
22.1 二次函数的图象和性质
课型
新授课
教
学
目
标
知 识
和
能 力
使学生能利用描点法正确作出函数y=ax2+b的图象。
过 程
和
方 法
让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
情 感
态 度
价值观
师生互动,学生动手操作,体验成功的喜悦
教学重点
会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系
教学难点
正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、提出问题
1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、分析问题,解决问题
问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?
(画出函数y=2x2和函数y=2x2的图象,并加以比较)
问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
教学要点
1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。
2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.
3.教师写出解题过程,同学生所画图象进行比较。
解:(1)列表:
x
…
-3
-2
-1
0
1
2
3
…
y=x2
…
18
8
2
0
2
8
18
…
y=x2+1
…
19
9
3
l
3
9
19
…
(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。
(图象略)
问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值
之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。
教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。
问题4:函数y=2x2+1和y=2x2的图象有什么联系?
由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。
问题5:现在你能回答前面提出的第2个问题了吗?
让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?
完成填空:
当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______.
以上就是函数y=2x2+1的性质。
三、做一做
问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?
教学要点
1.在学生画函数图象的同时,教师巡视指导;
2.让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。
问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?
教学要点
1.让学生口答,函数y=2x2-2的图象的开口向上,对称轴为y轴,顶点坐标是(0,-2);
2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数
值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得
最小值,最小值y=-2。
问题9:在同一直角坐标系中。函数y=-x2+2图象与函数y=-x2的图象有什么关系?
要求学生能够画出函数y=-x2与函数y=-x2+2的草图,由草图观察得出结论:函数y=-1/3x2+2的图象与函数y=-x2的图象的开口方向、对称轴相同,但顶点坐标不同,函数y=-x2+2的图象可以看成将函数y=-x2的图象向上平移两个单位得到的。
问题10:你能说出函数y=-x2+2的图象的开口方向、对称轴和顶点坐标吗?
[函数y=-x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)]
问题11:这个函数图象有哪些性质?
让学生观察函数y=-x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。
四、练习: P7练习。
五、小结
1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?
2.你能说出函数y=ax2+k具有哪些性质?
作业
设计
必做
教科书P14:5(1)
选做
练习册P109-114
教
学
反
思
课件14张PPT。22.1 二次函数的图象和性质(第3课时)本课是在学生已经学习了二次函数 y = ax 2 的基础上,继续进行二次函数的学习,这是对二次函数图象和性质研究的延续.课件说明课件说明学习目标:
1.会用描点法画出二次函数 y = ax 2+k 的图象;
2.通过图象了解二次函数的图象特征和性质.
学习重点:
观察图象,得出图象特征和性质. 问题1
(1)二次函数 y = ax 2 的图象是什么?
(2)它具有怎样的图象特征和性质?
(3)你是怎么研究的?1.复习 y = ax 2 的图象和性质2.类比探究二次函数 y = ax 2 + k 的图象和性质 问题2
类比 y = ax 2 的研究内容和研究方法,画出二次函数 y = 2x 2 + 1, y = 2x 2 - 1 的图象,并探究它们的图象特征和性质. 通过对二次函数 y = 2x 2 + 1, y = 2x 2 - 1 的探究,你能说出二次函数 y = ax 2 + k(a>0)的图象特征和性质吗?2.类比探究二次函数 y = ax 2 + k 的图象和性质 归纳:
一般地,当 a>0 时,抛物线 y = ax 2 + k 的对称轴是 y 轴,顶点是(0,k),开口向上,顶点是抛物线的最低点,a 越大,抛物线的开口越小.当 x<0 时, y 随 x 的增大而减小,当 x>0 时, y 随 x 的增大而增大.2.类比探究二次函数 y = ax 2 + k 的图象和性质 你能说出二次函数 y = ax 2 + k (a<0)的图象特征和性质吗?2.类比探究二次函数 y = ax 2 + k 的图象和性质 归纳:
一般地,当 a<0 时,抛物线 y = ax 2 + k 的对称轴是 y 轴,顶点是(0,k),开口向下,顶点是抛物线的最高点,a 越小,抛物线的开口越小.当 x<0 时, y 随 x 的增大而增大,当 x>0 时, y 随 x 的增大而减小.2.类比探究二次函数 y = ax 2 + k 的图象和性质 抛物线 y = 2x 2 + 1,y = 2x 2 - 1 与抛物线 y = 2x 2 有什么关系?抛物线 y = ax 2 + k 与抛物线 y = ax 2 有什么关系?2.类比探究二次函数 y = ax 2 + k 的图象和性质 归纳:
当 k>0 时,把抛物线 y = ax 2 向上平移 k 个单位,就得到抛物线 y = ax 2 + k;
当 k<0 时,把抛物线 y = ax 2 向下平移|k|个单位,就得到抛物线 y = ax 2 + k.2.类比探究二次函数 y = ax 2 + k 的图象和性质 在同一直角坐标系中,画出下列二次函数的图象:
(1) ;(2) ;(3) .
观察三条抛物线的位置关系,并分别指出它们的开口方
向、对称轴和顶点.你能说出抛物线 的开口
方向、对称轴和顶点吗?它与抛物线 有什么联
系?3.运用性质,巩固练习
开口方向:向上;
对称轴:y 轴;
顶点:(0,k).
当 k>0 时,把抛物线 向上平移 k 个单位,
就得到抛物线 ;
当 k<0 时,把抛物线 向下平移|k|个单
位,就得到抛物线 .3.运用性质,巩固练习 (1)本节课学了哪些主要内容?
(2)抛物线 y = ax 2 + k 与抛物线 y = ax 2 的区别与联系是什么?4.小结22.1.3 函数的图象与性质(一)
知识点:函数的图象是一条 ,对称轴是 ,顶点是 ,当,抛物线开口 ,顶点是抛物线的 ,当,抛物线开口 ,顶点是抛物线的 。
一.选择题
1.抛物线的顶点坐标是( )
A.(0,1) B. (0,-1) C. (1,0) D. (-1,0)
2.抛物线与轴有两个交点,且开口向下,则的取值范围分别是( )
A. B. C. D.
3.如图,小芳在某次投篮中,球的运动路线是抛物线y=-x2+3.5的一部分,若命中篮
圈中心,则他与篮底的距离是( )
A.3.5 B.4 C.4.5 D.4.6
4.将抛物线平移后得到抛物线,平移的方法可以是( ) 第3题
A.向下平移3个单位长度 B. 向上平移3个单位长度
C.向下平移2个单位长度 D.向下平移2个单位长度
5.抛物线的对称轴是( )
A.直线 B.直线 C. 轴 D.直线
6.抛物线与轴交于B,C两点,顶点为A,则的周长为( )
A. B. C.12 D.
7.在同一平面直角坐标系中,一次函数和二次函数的图象大致所示中的( )
A B. C. D.
二.填空题
1.抛物线的开口 ,对称轴是 ,顶点坐标是 ,当x
时, y随x的增大而增大, 当x 时, y随x的增大而减小.
2.二次函数中,若当时,函数值相等,则当取时,函数值等于 。
3.任给一些不同的实数,得到不同的抛物线,当取0,时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点。其中判断正确的是 。
4.点在抛物线上,则点A关于轴的对称点的坐标为 。
5.若抛物线的对称轴是轴,则 。
6.若一条抛物线与的形状相同且开口向上,顶点坐标为(0,2),则这条抛物线的解析式为 。
7.与抛物线关于轴对称的抛物线的解析式为 。
8.已知三点都在二次函数的图象上,那么的大小关系是 。(用“”连接)
三.解答题
1.已知抛物线过点(-2,-3)和点(1,6)
(1)求这个函数的关系式;
(2)当为何值时,函数随的增大而增大。
2.已知直线和抛物线相交于点,求的值;
3.如图,已知抛物线的顶点为,矩形CDEF的顶点C、F在抛物线上,点D、E在x轴 上,CF交y轴于点,且矩形其面积为8,此抛物线的解析式。
22.1.3 函数的图象与性质(一)
知识点:抛物线 y轴 (0,h) 向上 最低点 向下 最高点
一.选择题
1.A 2.D 3.B 4.B 5.C 6.B 7.B
二.填空题
1.下 y轴 (0,-3) 2. C 3.①②③④ 4.(3,-8)
5. 2 6. 7. 8.
三.解答题
22.1.3.2 二次函数y=a(x-h)2的图象与性质
一、学习目标:
1.会画二次函数y=a(x-h)2的图象;2.掌握二次函数y=a(x-h)2的性质,并要会灵活应用;
二、自主学习:模仿课本
画出二次函数y=-(x+1)2,y-(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.
先列表:
x
…
-4
-3
-2
-1
0
1
2
3
4
…
y=-(x+1)2
…
…
y=-(x-1)2
…
…
描点并画图.
1.观察图象,填表:
函数
开口方向
顶点
对称轴
最值
增减性
y=-(x+1)2
y=-(x-1)2
2.请在图上把抛物线y=-x2也画上去(草图).
①抛物线y=-(x+1)2 ,y=-x2,y=-(x-1)2的形状大小____________.
②把抛物线y=-x2向左平移_______个单位,就得到抛物线y=-(x+1)2 ;
把抛物线y=-x2向右平移_______个单位,就得到抛物线y=-(x+1)2 .
三、整理知识点
1.
y=ax2
y=ax2+k
y=a (x-h)2
开口方向
顶点
对称轴
最值
增减性
(对称轴左侧)
2.对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.
四、课堂训练
1.填表
图象(草图)
开口
方向
顶点
对称轴
最值
对称轴
右侧的增减性
y=x2
y=-5 (x+3)2
y=3 (x-3)2
2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.
3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.
把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.
4.将抛物线y=-(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.
5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式 ___________________________.
6、(p35练习)在同一直角坐标系中画出下列二次函数的图象:
y= x2, y= (x+2)2, y=(x-2)2
观察三条抛物线的位置关系,并分别指出它们的开口方向、对称轴和顶点
五、目标检测
1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_______.
2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则
m=__________,n=___________.
3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.
4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.
22.1 二次函数的图象和性质
教学时间
课题
22.1 二次函数的图象和性质
课型
新授课
教
学
目
标
知 识
和
能 力
1.使学生能利用描点法画出二次函数y=a(x—h)2的图象。
过 程
和
方 法
让学生经历二次函数y=a(x-h)2性质探究的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。
情 感
态 度
价值观
教学重点
会用描点法画出二次函数y=a(x-h)2的图象,理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系
教学难点
理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、提出问题
1.在同一直角坐标系内,画出二次函数y=-x2,y=-x2-1的图象,并回答:
(1)两条抛物线的位置关系。
(2)分别说出它们的对称轴、开口方向和顶点坐标。
(3)说出它们所具有的公共性质。
2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?
二、分析问题,解决问题
问题1:你将用什么方法来研究上面提出的问题?
(画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察)
问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗?
教学要点
1.让学生完成列表。
2.让学生在直角坐标系中画出图来: 3.教师巡视、指导。
问题3:现在你能回答前面提出的问题吗?
开口方向
对称轴
顶点坐标
y=2x2
y=2(x-1)2
教学要点
1.教师引导学生观察画出的两个函数图象.
根据所画出的图象,完成以下填空:
2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=2(x-1)2与y=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。
问题4:你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗?
教学要点
1.教师引导学生回顾二次函数y=2x2的性质,并观察二次函数y=2(x-1)2的图象;
2.让学生完成以下填空:
当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______。
三、做一做
问题5:你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗?
教学要点
1.在学生画函数图象的同时,教师巡视、指导;
2.请两位同学上台板演,教师讲评;
3.让学生发表不同的意见,归结为:函数y=2(x+1)2与函数y=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图象可以看作是将函数y=2x2的图象向左平移1个单位得到的。它的对称轴是直线x=-1,顶点坐标是(-1,0)。
问题6;你能由函数y=2x2的性质,得到函数y=2(x+1)2的性质吗?
教学要点
让学生讨论、交流,举手发言,达成共识:当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。
问题7:函数y=-(x+2)2图象与函数y=-x2的图象有何关系?
问题8:你能说出函数y=-(x+2)2图象的开口方向、对称轴和顶点坐标吗?
问题9:你能得到函数y=(x+2)2的性质吗?
教学要点
让学生讨论、交流,发表意见,归结为:当x<-2时,函数值y随x的增大而增大;
当x>-2时,函数值y随工的增大而减小;当x=-2时,函数取得最大值,最大值y=0。
四、课堂练习: P8练习。
五、小结:
1.在同一直角坐标系中,函数y=a(x-h)2的图象与函数y=ax2的图象有什么联系和区别?
2.你能说出函数y=a(x-h)2图象的性质吗?
3.谈谈本节课的收获和体会。
作业
设计
必做
教科书P14:5(2)
选做
练习册P115-116
教学
反思
课件15张PPT。22.1 二次函数的图象和性质(第4课时)本课是在学生已经学习了二次函数 y = ax 2,y = ax 2 + k 的基础上,继续进行二次函数的学习,这是对二次函数图象和性质研究的延续.课件说明学习目标:会用描点法画出二次函数 的图象, 通过图象了解它们的图象特征和性质.
学习重点:观察图象,得出上述二次函数的图象特征和性质.课件说明 (1)二次函数 y = ax 2,y = ax 2+k 的图象是什么?
(2)它们具有怎样的图象特征和性质?
(3)你是怎么研究的?1.复习二次函数 y = ax 2,y = ax 2+k 的图象和性质 在同一直角坐标系中,画出二次函数 的图象,并探究它们的图象特征和性质.2.类比探究 , 的图象和性质 通过对二次函数 的探究,你能说出二次函数 的图象特征和性质吗?2.类比探究 , 的图象和性质2.类比探究 , 的图象和性质2.类比探究 , 的图象和性质 抛物线 与抛物线 有什么关系? 抛物线 与抛物线 y = ax 2 有什么关系?2.类比探究 , 的图象和性质 归纳:
当 h>0 时,把抛物线 y = ax 2 向右平移 h 个单位长度,就得到抛物线 ;
当 h<0 时,把 y = ax 2 向左平移|h|个单位长度,就得到抛物线 .2.类比探究 , 的图象和性质 画出二次函数 的图象,你能说出它的图象特征和性质吗?它与抛物线 有什么关系?你能说出 的图象和性质吗?2.类比探究 , 的图象和性质2.类比探究 , 的图象和性质 抛物线 有如下特点:
(1)当 a>0 时,开口向上;当 a<0 时,开口向下.
(2)对称轴为直线 x = h.
(3)顶点坐标(h,k).
如果 a>0,当 x<h 时,y 随 x 的增大而减小,当 x>h 时,y 随 x 的增大而增大;如果 a<0,当 x<h 时, y 随 x 的增大而增大,当 x>h 时,y 随 x 的增大而减小.2.类比探究 , 的图象和性质 例 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为 1 m 处达到最高,高度为 3 m,水柱落地处离池中心 3 m,水管应多长?3.运用性质,巩固练习 (1)本节课学了哪些主要内容?
(2)抛物线 与抛物线 y = ax 2 的区别与联系是什么? 4.小结22.1.4 二次函数 的图象和性质
知识点:1、二次函数的对称轴为 ,顶点坐标为 ,它的最高(低)点在 点,当 时,它有最大(小)值,值为 。
2、在抛物线中,为抛物线与 交点的纵坐标。
当时,图象开口 ,有最 点,且 时,随的增大而增大,
时,随的增大而减小;
当时,图象开口 ,有最 点,且 时,随的增大而增大,
时,随的增大而减小;
3、抛物线可由抛物线进行左(右)、上(下)平移得到。
一、选择题:
1、抛物线的顶点坐标为( )
A、(-2,3) B、(2,11) C、(-2,7) D、(2,-3)
2、若抛物线与轴交于点(0,-3),则下列说法不正确的是( )
A、抛物线开口方向向上 B、抛物线的对称轴是直线
C、当时,的最大值为-4 D、抛物线与轴的交点为(-1,0),(3,0)
3、要得到二次函数的图象,需将的图象( )
A、向左平移2个单位,再向下平移2个单位 B、向右平移2个单位,再向上平移2个单位
C、向左平移1个单位,再向上平移1个单位 D、向右平移1个单位,再向下平移1个单位
4、在平面直角坐标系中,若将抛物线先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后,所得到的抛物线的顶点坐标为( )
A、(-2,3) B、(-1,4) C、(1,4) D、(4,3)
5、抛物线的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为,则、的值为( )
A、 B、 C、 D、
6、二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t值的变化范围是( )
A.0<t<1 B.0<t<2 C.1<t<2 D.-1<t<1
7、已知二次函数的图象如图所示对称轴为x=.下列结论中,正确的是( )
A. B. C. D.
8、二次函数的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是( )
二、填空题:
1、抛物线的开口方向向 ,对称轴是 ,最高点的坐标是
,函数值得最大值是 。
2、抛物线变为的形式,则= 。
3、抛物线的最高点为(-1,-3),则 。
4、若二次函数的图象经过点(-1,0),(1,-2),当随的增大而增大时,的取值范围是 。
5、把抛物线先向右平移3个单位,再向下平移2个单位,所得抛物线解析式为,则= 。
6、在平面直角坐标系中,若将抛物线y=2x2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是 。
7、抛物线()的对称轴为直线,且经过点(—1,),(2,)
则试比较与的大小: (填“>”“<”或“=”)。
8、已知二次函数y=x2-7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是 (用“<”连接)。
9、二次函数的图象关于原点O(0, 0)对称的图象的解析式是_________________。
10、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有 。
三、解答题:
1、已知抛物线的对称轴为,且经过点(1,4)和(5,0),试求该抛物线的表达式。
2、如图,抛物线与轴交于点A、B,与轴交于点C,点O为坐标原点,点D为抛物线顶点,点E在抛物线上,点F在轴上,四边形OCEF为矩形,且OF=2,EF=3
(1)求抛物线所对应的函数解析式;
(2)求的面积。
3、如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
(1)求m的值;
(2)求点B的坐标;
(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求点D的坐标.
4、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
5、如图,已知二次函数的图象的顶点为.二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上.
(1)求点与点的坐标;
(2)当四边形为菱形时,求函数的关系式.
22.1.4二次函数的图像和性质
一、理解新知
1、直线x=h (h,k) 2、相同 不同 向右平移h个单位,再向上平移k个单位;
向右平移h个单位,再向下平移|k|个单位;向左平移|h|个单位,再向上平移k个单位;
向左平移|h|个单位,再向下平移|k|个单位。
3、上 减 增 低;下 增 减 高
二、知识巩固练习:
(一)选择:
1、B 2、C 3、B 4、D 5、C 6、C 7、C 8、C
(二)填空:
1、直线x=-3 (-3,-1) <-3 >-3 大 -1
2、>0 <0 3、> 4、 5、18
6、右 3 上 1 7、
8、
9、 3 -2 10、①
(三)解答:
22.1.4二次函数的图象和性质
一、理解新知
1、直线 () 顶
2、y轴
向上 低 ;向下 高
二、知识巩固练习:
(一)选择:
1、B 2、C 3、D 4、D 5、B 6、B 7、D 8、B
(二)填空:
1、下 x=1 (1,1) 1 2、-90
3、-6 4、 5、1
6、(4,3) 7、> 8、
9、 10、④
(三)解答:
22.1.4二次函数的图象和性质
一、理解新知
1、直线 () 顶
2、y轴
向上 低 ;向下 高
二、知识巩固练习:
(一)选择:
1、B 2、C 3、D 4、D 5、B 6、B 7、D 8、B
(二)填空:
1、下 x=1 (1,1) 1 2、-90
3、-6 4、 5、1
6、(4,3) 7、> 8、
9、 10、④
(三)解答:
22.1.3.3 二次函数y=a(x-h)2+k的图象与性质
一、学习目标:
1.会画二次函数的顶点式y=a (x-h)2+k的图象;2.掌握二次函数y=a (x-h)2+k的性质;3.会应用二次函数y=a (x-h)2+k的性质解题.
二、自主学习 模仿课本完成
画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.
列表:
x
…
-4
-3
-2
-1
0
1
2
…
y=-(x+1)2-1
…
…
由图象归纳:
1.
函数
开口方向
顶点
对称轴
最值
增减性
y=-(x+1)2-1
2.把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.
三、理一理知识点
y=ax2
y=ax2+k
y=a (x-h)2
y=a (x-h)2+k
开口方向
顶点
对称轴
最值
增减性
(对称轴右侧)
2.抛物线y=a (x-h)2+k与y=ax2形状___________,位置________________.
四、课堂练习
1.
y=3x2
y=-x2+1
y=(x+2)2
y=-4 (x-5)2-3
开口方向
顶点
对称轴
最值
增减性
(对称轴左侧)
2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.
3.顶点坐标为(-2,3),开口方向和大小与抛物线y=x2相同的解析式为( )
A.y=(x-2)2+3 B.y=(x+2)2-3
C.y=(x+2)2+3 D.y=-(x+2)2+3
4.二次函数y=(x-1)2+2的最小值为__________________.
5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.
6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.
7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为 __________________.
8、(p37练习)说出下列抛物线的开口方向、对称轴和顶点:
(1) y=2(x+3)2+5 (2) y=-3 (x-1)2-2
(3) y=4 (x-3)2+7 (4)y=-5 (x+2)2-6
五、目标检测
1.
开口方向
顶点
对称轴
y=x2+1
y=2 (x-3)2
y=- (x+5)2-4
2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.
3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示( )
A B C D
4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.
5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)
2.1 二次函数的图象和性质
教学时间
课题
2.1 二次函数的图象和性质
课型
新授课
教
学
目
标
知 识
和
能 力
1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。
2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。
过 程
和
方 法
让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。
情 感
态 度
价值观
教学重点
确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质
教学难点
正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、提出问题
1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?
(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)
2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?
(函数y=2(x-1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P10图26.2.3)
3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?
二、试一试
你能填写下表吗?
y=2x2 向右平移
的图象 1个单位
y=2(x-1)2
向上平移
1个单位
y=2(x-1)2+1的图象
开口方向
向上
对称轴
y轴
顶 点
(0,0)
问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?
问题3:你能发现函数y=2(x-1)2+1有哪些性质?
对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识;
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。
三、做一做
问题4:在图26.2.3中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗?
教学要点
1.在学生画函数图象时,教师巡视指导;
2.对“比较”两字做出解释,然后让学生进行比较。
问题5:你能说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
(函数y=-(x-1)2+2的图象可以看成是将函数y=-x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)
四、课堂练习: P10练习。
五、小结
1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?
2.谈谈你的学习体会。
作业
设计
必做
教科书P14:5(3)
选做
教科书P15:11
教
学
反
思
课件12张PPT。22.1 二次函数的图象和性质(第5课时)本节课是在讨论了二次函数 的图象和性质的基础上对二次函数 y = ax 2+bx+c 的图象和性质进行研究.主要的研究方法是通过配方将 y=ax 2+bx+c 向 转化,体会知识之间内在联系.在具体探究过程中,从特殊的例子出发,分别研究 a>0和 a<0 的情况,再从特殊到一般,得出 y=ax 2+bx+c 的图象和性质.课件说明学习目标:
1.理解二次函数 y = ax 2 + bx + c 与 之间的联系,体会转化思想;
2.通过图象了解二次函数 y = ax 2 + bx + c 的性质,体会数形结合的思想.
学习重点:
会用配方法将数字系数的二次函数的表达式化为 y =
的形式,并能由此得到二次函数 y = ax 2
+ bx + c 的图象和性质.课件说明 问题1
如何研究二次函数 的图象和性质?1.探究二次函数 的图象和性质 如何将 转化成 的形式?1.探究二次函数 的图象和性质= (x2 - 12x + 42)= (x2 - 12x + 36 - 36 + 42) ·你能画出 的图象吗?1.探究二次函数 的图象和性质 ·如何直接画出 的图象? ·观察图象,二次函数 的性质是什么? 你能用前面的方法讨论二次函数 y = -2x 2 - 4x +1 的图象和性质吗?2.探究二次函数 y = -2x 2 - 4x +1 的图象和性质 你能说说二次函数 y = ax 2 + bx + c 的图象和性质吗?3.探究二次函数 y = ax 2 + bx + c 的图象和性质 对于一般的二次函数 y = ax 2 + bx + c,如果 a>0,当 x< 时, y 随 x 的增大而减小,当 x> 时, y 随 x 的增大而增大;如果 a<0,当 x< 时,y 随 x 的增大而增大,当 x> 时,y 随 x 的增大而减小.3.探究二次函数 y = ax 2 + bx + c 的图象和性质 (1)求出下列抛物线的开口方向,对称轴和顶点坐标.
① y = 2x 2 - 4x +5
② y = -x 2 + 2x -3 4.巩固练习开口向上、x = 1、(1, 3).开口向下、x = 1、(1,-2). (2)二次函数 y = -2x 2 + 4x -1,
当 x 时, y 随 x 的增大而增大,
当 x 时, y 随 x 的增大而减小.<1>14.巩固练习 (1)本节课研究的主要内容是什么?
(2)我们是怎么研究的(过程和方法是什么)?
(3)在研究过程中你遇到的问题是什么?怎么解决的?5.小结