第二十五章概率初步 单元练习 2023-2024学年人教版数学九年级上册
姓名 班级 学号 成绩
一、选择题:(本题共8小题,每小题5分,共40分.)
1.公路上行驶的一辆汽车车牌为偶数的频率约是( )
A.50% B.100%
C.由各车所在单位或个人定 D.无法确定
2.同时抛两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,则下列事件中是不可能事件的是( )
A.点数之和为奇数 B.点数之和等于1
C.点数之和为偶数 D.点数之和大于9
3.小明、小雪、丁丁和东东在公园玩飞行棋,四人轮流掷骰子,小明掷骰子7次就掷出了4次6,则小明掷到数字6的概率是( )
A. B. C. D.不能确定
4.在数轴上表示±5的两点以及它们之间的所有整数点中,任意取一点P,则P点表示的数大于3的概率是( )
A. B. C. D.
5.如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )
A.0.25 B.0.5 C.0.75 D.0.95
6.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则此口袋中估计白球的个数是( )个.
A.20 B.30 C.40 D.50
7.电脑上有一个有趣的“扫雷”游戏,图是扫雷游戏的一部分,说明:图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷,现在还剩下A、B、C三个方格未被探明,其它地方为安全区(包括有数字的方格),则A、B、C三个方格中有地雷的概率最大的方格是( )
A.A B.B C.C D.无法确定
8.某商场为了吸引顾客,特设了一个有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得,每10000张奖券为一个开奖组,特等奖1名,一等奖50名,二等奖100名,那么某顾客买了1000元的物品,那么他中特等奖的概率为( )
A. B. C. D.
二、填空题:(本题共5小题,每小题3分,共15分.)
9.从﹣1,0,2和3中随机地选一个数,则选到正数的概率是 .
10.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。若由小明先取,且小明获胜是必然事件,则小明第一次取走火柴棒的根数是 .
11.一个布袋中有三个完全相同的小球,把它们分别标号为1、2、3,从布袋中任取一个球记下数字作为点P的横坐标x,不放回小球,然后再从布袋中取出一个球记下数字作为点P的纵坐标y,那么点 落在直线 上的概率是 .
12.对某名牌衬衫抽检结果如下表:
抽检件数 10 20 100 150 200 300
不合格件数 0 1 3 4 6 9
如果销售1000件该名牌衬衫,至少要准备 件合格品,供顾客更换
13.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球.
三、解答题:(本题共5题,共45分)
14.汕头有丰富的旅游资源、小陈利用假日来汕头游玩,上午从A、B、C三个景点中任意选择一个游玩,下午从D、E两个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果,并求小陈恰好选中景点B和E的概率.
15.小莉和哥哥玩扑克牌游戏,小莉有数字为1,2,3,5的四张牌,哥哥有数字为4,6,7,8的四张牌,按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉胜;如果和为奇数,则哥哥胜.
(1)请用数形图或列表法分别求出小莉胜和哥哥胜的概率;
(2)这个游戏公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.
16.某校师生为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制如下统计表:
零花钱数额/元 5 10 15 20
学生人数/名 a 15 20 5
根据表格中信息,回答下列问题:
(1)求a的值.
(2)求着50名学生每人一周内零花钱数额的中位数.
(3)随机抽查一名学生,抽到一周内零花钱数额不大于10元的同学概率为多少?
17.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元
(1)若他选择转动转盘1,则他能得到优惠的概率为多少?
(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.
18.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
(1)扇形统计图中“优秀”所对应扇形的圆心角为 度,并将条形统计图补充完整.
(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.
参考答案:
1.A 2.B 3.B 4.D 5.C 6.B 7.A 8.A
9.或0.5
10.1
11.
12.30
13.48
14.解:列表如下
由表可知,共有6种等可能结果,其中小陈恰好选中景点B和E的只有1种结果,
∴小陈恰好选中景点B和E的概率为 .
15.(1)解:画树状图得:
一共有16种等可能结果,其中和为偶数的有6种,和为奇数的有10种,
所以小丽获胜的概率为 = 、哥哥获胜的概率为 = ;
(2)解:由(1)解答的结果可知:小莉获胜的概率为 ,哥哥去的概率为 ,
所以游戏不公平,对哥哥有利.
游戏规则改为:若和为偶数则小莉得,若和为奇数则哥哥得,则游戏是公平的.
16.解:(1)总人数50,所以a=50﹣15﹣5﹣20=10;
(2)共50人,中位数应该是排序后第25人和第26人的平均数,
故中位数为(10+15)÷2=12.5元;
(3)∵共50人,零花钱数额不大于10元的有25人,
∴随机抽查一名学生,抽到一周内零花钱数额不大于10元的同学概率为:=.
17.解:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,
∴P(得到优惠)==;
(2)转盘1能获得的优惠为:=25元,
转盘2能获得的优惠为:40×=20元,
所以选择转动转盘1更优惠.
18.(1)72;
(2)解:画树状图,如图所示:
共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)= .