3.3勾股定理的简单应用(3种常见题型)
【学习目标】
1.掌握勾股定理的基本计算;
2.构造直角三角形,利用勾股定理解题。
【典型例题】
类型一、 航海问题
1.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为( )
A.40海里 B.40海里 C.80海里 D.40海里
举一反三:
【变式1】如图,某海岸线的方向为北偏东,从港口A处测得海岛C在北偏东方向,从港口B处测得海岛C在北偏东方向,已知港口A与海岛C的距离为36海里,求港口B与海岛C的距离.
【变式2】甲、乙两船同时从港口A出发,甲船以30海里/时的速度沿北偏东35°方向航行,乙船沿南偏东55°向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,问乙船的速度是每小时多少海里?
【变式3】如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD.
【变式4】某港口位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1.5小时后相距30海里.已知“海天”号沿西北方向航行,那么请你判断“远航”号的航行方向并说明理由.
类型二、翻折题型
2.如图,在长方形纸片中,,. 把长方形纸片沿直线折叠,点落在点处,交于点,则的长为( )
A. B. C. D.
举一反三:
【变式1】如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )
A.4 B.3 C.2 D.5
【变式2】如图,在△ABC纸片中,∠ABC=90°,将其折叠,使得点C与点A重合,折痕为DE,若AB=3cm,AC=5cm,则△ABE的周长为( )
A.4 cm B.6 cm C.7 cm D.8 cm
【变式3】如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则△ADC的周长是__________
【变式4】如图,由△ABC中,,,.按如图所示方式折叠,使点B、C重合,折痕为DE,求出AE和AD的长.
,
类型三、 梯子题型
3.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5m,则小巷的宽为( ).
A.2.4m B.2.5m C.2.6m D.2.7m
举一反三:
【变式1】如图,一架梯子AB长为5米,顶端A靠在墙AC上,这时梯子下端B与墙底端C的距离是3米,梯子下滑后停在DE的位置上,这时测得BE为1米,则梯子顶端A下滑了( )
A.1米 B.1.5米 C.2米 D.2.5米
【变式2】如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2m.如果梯子的顶端A沿墙下滑0.5m(AC=0.5m),求梯子底端B外移的距离(BD的长).
【变式3】如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.
(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?
(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?
【变式4】现有一楼房发生火灾,消防队员决定用消防车上的云梯救人,已知消防车高3m,云梯最多只能伸长到10m,救人时云梯伸至最长.如图,云梯先在A处完成从9m高处救人后,然后前进到B处从12m高处救人.
(1)求消防车在A处离楼房的距离(AD的长度);
(2)求消防车两次救援移动的距离(AB的长度)(精确到0.1m,参考数据).