课题: 一元一次方程的概念
教材:人教版义务教育课程标准实验教科书数学七年级上册第二章第一节
授课教师:北京三帆中学(北京师大二附中初中部)耿旭龙
1.教学目标:
(1)通过对多个实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.
(2)在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.
(3)使学生经历把实际问题抽象为数学方程的过程,体会方程是刻画现实世界的一种有效的数学模型,体会建立数学模型的思想.
2.教学重点、难点:使学生理解问题情境,探究情境中包含的数量关系,最终用方程来描述和刻画事物间的相等关系.
3.教学方法:启发和讲授
4.教学过程:
问题与情境 师生行为 设计意图
[阶段1] 情境导入 回顾旧知 今年进行的德国世界杯足球赛,吸引了全球的目光.你喜欢足球吗?下面来看一个与足球场有关的问题. 引例 德国世界杯足球赛莱比锡赛场为长方形的足球场,周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米? 教师给出引例,直接带领学生进入到实际问题的情境中. 先请学生尝试解答.预案1 算术方法:足球场长与宽的和为 310÷2=155(米)根据和差关系,得出足球场的长度为(155+25)÷2=90(米),宽度为90-25=65(米).预案2 方程方法: 设足球场的长度为米,那么足球场的宽度能用含的式子表示为米.根据“长方形的周长=(长+宽)×2”,列出方程:. ……教师指出,如何解出方程中的未知数,是今后要学习的知识.然后,请学生回顾方程的概念:含有未知数的等式,叫做方程.教师引导学生总结引例的研究方法,启发学生比较算术方法和方程方法的区别: 用算术方法解决问题时,只能用已知数,而用方程方法解题时用字母表示的未知数也可以参与运算. 算术方法主要运用逆向思维,列方程主要运用正向思维. 依据新课程的理念,教师要创造性地使用教材.作为引入本课的第一个例子,选用了“世界杯足球赛赛场问题”,以激发学生的学习兴趣,而且设置了符合学生认知水平的问题情境,以达到由浅入深、逐步提高的目的.
[阶段2]联系实际 探究新知 请同学们用方程来研究问题. 例1 青藏铁路格尔木至拉萨段全长共1142千米,途中经过冻土路段和非冻土路段.若列车行驶的平均时速为冻土路段每小时80千米,非冻土路段每小时110千米,全程行驶时间约12小时,你能算出列车经过的冻土路段有多少千米吗?例2 学校召开运动会,王平负责给同学们购买饮料.现在要选购两种饮料共40瓶,其中矿泉水1.5元一瓶,茶饮料2元一瓶.王平计划恰好花费65元购买这些饮料,那么两种饮料应该各买多少瓶呢?例3 将一个底面半径是5厘米、高为36厘米的“瘦长”型圆柱钢材锻压成高为9厘米的“矮胖”型圆柱钢材,底面半径变成了多少厘米?()归纳概念: 只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.[阶段3]巩固练习 拓展思维 练习1 判断下列式子是不是一元一次方程,为什么?(1);(2); (3); (4); (5); (6). 练习2 列方程研究古诗文问题:隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤.(注:在古代1斤是16两,半斤就是8两)练习3 根据方程,设计一道以“2008北京奥运会”为实际背景的应用题,并进行交流.[阶段4]归纳小结 布置作业 归纳小结: 布置作业: 教师引导学生研究列方程解决问题. 明确用方程研究问题,所以设所求的冻土路段为千米,然后分析发现两个相等关系: 冻土路段路程+非冻土路段路程=全程 冻土路段时间+非冻土路段时间=全程行驶时间 可以利用第一个相等关系,得到非冻土路段行驶路程为千米,再将第二个相等关系用字母和数字表示出来,得到方程.由学生尝试解答问题.分析数量关系,找出相等关系:购买矿泉水数量+购买茶饮料数量=总的选购数量购买矿泉水的费用+购买茶饮料的费用=总的花费预案1 设购买矿泉水的数量为瓶,根据第一个相等关系,得到购买茶饮料的数量为瓶.根据第二个相等关系得到方程. 预案2 设购买茶饮料的数量为瓶,则购买矿泉水的数量为瓶,得到方程. 预案3 设购买购买矿泉水瓶,购买茶饮料瓶,可以列出两个二元一次方程和.教师指出预案3的方程也可以解决问题,这方面的知识将在今后进一步学习.先请学生回忆小学学过的圆柱体积公式: 圆柱体积=底面积×高再通过动画演示使学生注意到锻压前后圆柱的体积不变,然后由学生根据这一相等关系,设底面半径变成了厘米,列出方程: .在研究了四个实际问题后,教师引导学生观察得到的方程:(1);(2);(3);(4);(5);(6).找出前三个方程的共同特点:只含有一个未知数,并且未知数的指数都是1,进而归纳出一元一次方程的概念.第4个和第5个方程含有两个未知数,是二元一次方程.第6个方程的未知数指数是2,是一元二次方程.得出概念后,请同桌的学生互相举出一元一次方程的例子,进行辨析.练习1设计的6个式子中,有的不是等式,有的未知数不止一个,有的未知数的指数不是1.师生理解古诗文:有几个客人在房间内分银子,每人分七两,最后多四两,每人分九两,最后还少八两,问有几个人?有几两银子? 预案1 学生用表示人数,然后根据两种分法总银两数不变,得到方程. 预案2 用表示总银两数,根据两种分法人数相同,得到方程. 然后,教师向学生介绍中国古代数学家在方程发展过程中所做贡献: 在我国,“方程”一词最早出现于《九章算术》.《九章算术》全书共分九章,第八章就叫“方程”. 12世纪前后,我国数学家用“天元术”来解题,即先要“立天元为某某”,相当于“设为某某”. 14世纪初,我国元朝数学家朱世杰创立了“四元术”,四元指天、地、人、物,相当于四个未知数.采用小组合作学习方式,以四人小组为单位合作设计一个实际问题,然后在全班进行小组交流.教师引导学生从回顾知识和总结方法两个方面进行课堂小结.(1)回顾知识:方程、一元一次方程的概念.(2)总结方法:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法. 设未知数 列方程 (1)阅读教材相关内容,然后完成教材第74页的习题6、7、8.(2)选作作业: 列方程解决问题 西安白天的出租车收费标准为:起步价6元(即行驶距离不超过3千米都需付6元),行驶超过3千米以后,每增加1千米加收1.5元(不足1千米时按1千米计算).王明和李红乘坐这种出租车去博物馆参观,下车时他们交付了15元车费,那么他们搭乘出租车最多走了多少千米(不计等候时间)? 通过设置问题情境,引导学生关注社会,使学生进一步经历列方程研究实际问题的过程,培养学生将实际问题抽象为数学问题的能力. 选择与学生生活非常贴近的情境来设计问题,引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,有利于培养学生的发散思维.设计的问题情境可以让学生关注生产实践,并且前面列出的方程中的未知数指数都是1,而本例列出的方程中的未知数指数是2,可以为归纳一元一次方程的概念提供对比的实例.通过观察、思考、分析六个方程的特点,使学生经历概念的归纳和概括的过程,引导学生深层次地参与到概念的形成过程中.通过练习使学生巩固一元一次方程的概念,把握住概念的本质.设计的古诗文应用题目的是增加数学课的人文色彩,使学生感受数学来源于生活,应用于生活的文化内涵. 通过介绍,使学生对中国古代数学家在方程的发展方面所作贡献增加了解. 开放性的问题,可以使学生开阔思维,充分发挥想象力和创造力. 小组合作,组间交流,还可以培养学生的合作意识.主要由学生进行总结和互相补充,教师只做适当的点拨,以培养学生的归纳概括能力. 为了适应学生不同层次的需求,设计了分层作业.教材上的基础题目可进一步巩固课堂所学知识,选做作业则可以发挥学生学习的自主性.
教学设计说明
(一)教学目标的确定
本节课的教学目标是从知识与技能、过程与方法、情感与态度三个方面,根据《全日制义务教育数学课程标准》中关于“一元一次方程概念”的教学要求,结合学生的实际情况确定的.
学生在小学时已经能较为熟练的运用算术方法解决问题,列出的算式只能用已知数;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数.通过比较,让学生感受到方程作为刻画现实世界有效模型的意义.通过对实际问题的分析,使学生能理解问题情境,主动探究情境中包含的数量关系,提高分析问题和处理问题的能力;明确列方程的关键就是根据题意找到“相等关系”,能用方程来描述和刻画事物间的相等关系.因此,我根据教学内容的特点,制定了教学目标1和2.
通过对实际问题的研究,学生可以初步认识到日常生活中的许多问题可以用数学方法解决,体验到实际问题“数学化”的过程,所以我制定了教学目标3.
(二)教学过程的设计
1.通过设置“世界杯赛场问题”这一情境来复习方程的概念,以激发学生的好奇心和主动参与学习的欲望.通过比较算术方法和方程方法的区别,初步体验从算术到方程是数学的进步.
2.设置的例题与练习给学生提供了丰富多彩的、贴近学生生活实际的问题情境,以鼓励和培养学生应用数学知识解决实际问题的意识,并鼓励学生从不同的角度分析问题,根据不同的设法,列出不同的方程.在学习数学知识的同时,还渗透了对学生的人文教育.
3.练习3的安排是通过鼓励学生自己设计方程的实际背景,进行交流,并对设计的问题进行评价,以加深对方程和方程应用的认识,激发学生的主动性和创造性.
4.通过师生共同小结,发挥学生的主体作用,有利于学生巩固所学知识,培养学生归纳、概括的能力.
5.作业安排是为了让学生更进一步落实课堂教学目标,选做题是为了满足不同层次学生的需求,为学有余力的学生提供发展空间.
6. 主要采用了启发和讲授的教学方法,以生活中的实际问题为例来创设情境,引导学生关注国家大事、身边小事、生产实践等. 在课堂上努力营造一种学生自主探究和合作交流的氛围,引导学生去分析思考和归纳总结,进而达到对知识的“发现”和接受的目的.有意识地给学生创造一个欣赏数学、探索数学的平台, 渗透给学生由实际问题抽象为方程模型这一过程中蕴涵的符号化、模型化的思想.
实际问题
一元一次方程
PAGE
1