课题:11.1.2 三角形的高、中线与角平分线
学 科:数学 执教教师:
执教班级: 课时安排: 1个课时
教材分析 教材在介绍三角形的高、中线、角平分线时,让学生从画图入手,这样可以在学生头脑中留下这三种线段的清晰形象,然后让学生结合这些具体形象叙述它们的定义,培养了他们的语言表达能力.
学情分析 学生在前两个学段已经知道什么是三角形的高,还学过三角形的面积= ×底边×高,并且在七年级上学期已经学习了角平分线的定义,为新知识的学习奠定了基础.
教学目标 1、通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画冬、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点. 2、经历画、折等实践操作活动过程,发展学生的空旧观念,推理能力及创新精神,学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力. 3、通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心.
教学重难点 能够正确地画出三角形的“高”、“角平分线”和“中线”,并理解它们概念的含义、联系和区别.
教学准备 多媒体课件
教学环节 教学内容 师生活动 信息技术应用
复习回顾 问题导入 三角形的高的概念 从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高. 锐角三角形的三条高都在三角形的内部; 直角三角形的两条高分别与两条边重合; 钝角三角形的两条高在三角形的外部. 三角形三条高所在的直线交于一点. 教师提问:△ABC 的面积怎么求呢? 教师追问: 过三角形的任意一个顶点,你能画出它对边的高吗? 利用多媒体课件展示. 利用授课助手投屏学生的画图.
随堂练习 巩固应用 在下图中,正确画出△ABC 中边BC 上高的是( ) 2.如图,写出以AE为高的三角形. 教师让学生说出答案,并说明理由. 教师让一学生上在黑板上书写,其余学生判断正误,并让学生总结如何做到不会写漏. 利用班级优化大师抽选、点评
提出问题 引出新知 三角形的中线的概念: 在三角形中,连接一个顶点与它对边的中点的线段叫做三角形的中线. 任意三角形的三条中线都在三角形的内部. 三角形的三条中线相交于一点,三角形三条中线的交点叫做三角形的重心. 教师提问:你能经过三角形的一个顶点画一条线段,将这个三角形分为面积相等的两个三角形吗? 追问:过三角形任意一个顶点,你能画出它对边的中线吗? 使用笔工具在课件上标注.
课堂练习 巩固新知 3.如图,AD,BE,CF 是△ABC 的三条中线. (1)AC = AE = EC; CD = ;AF = AB; (2)若S△ABC = 12 cm2, 则S△ABD = . 教师提问,学生回答. 在提问第(2)题时,教师让学生说出不同的答案. 教师让学生进一步探究被三条中线分成的六个小三角形之间的关系 学生使用笔工具在课件上书写. 用班级优化大师随机抽选、点评.
4.如图所示,AM 是△ABC的中线,△ABM 的面积是 20 平方厘米,求△ABC 的面积. 教师抽选学生作答,并请他说出理由.
动手操作 发现新知 三角形的角平分线的概念: 在三角形中,一个角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线. 任意三角形的三条角平分线都在三角形的内部 三角形的三条角平分线相交于一点. 教师提问:准备一个三角形纸片ABC ,按图所示的方法折叠,展开后,折痕AD 把∠BAC 分成∠1和∠2 两个角. ∠1 和∠2 有什么关系? 追问:过三角形的任意一个顶点,你能画出它的角平分线吗? 课件展示,投屏学生的画图
牛刀小试 学以致用 5.如图,AD,BE,CF 是△ABC 的三条角平分线,则 ∠1 = ; ∠3 = ; ∠ACB =2 . 教师抽选学生在课件上写出答案,并说明理由. 学生使用笔工具在课件上书写. 用班级优化大师随机抽选、点评.
6.如图,AD 是△ABC 的中线,AE 是∠BAC 的平分线,则BD = ____ = BC,∠BAE = ____ = ∠BAC. 学生回答,教师点评.
反思回顾 归纳总结 ①本节课,我学到了哪些知识? ②本节课,给我感受最深的是什么? ③课后你准备对哪方面进行进一步研究? 还有哪些困惑?此外我还知道了…… 教师让学生通过问题回忆课堂内容,找出不足,为进一步研究提供契机. 课件展示
随堂演练 反馈学情 1.以下说法错误的是( ) A.三角形的三条高一定在三角形内部交于一点 B.三角形的三条中线一定在三角形内部交于一点 C.三角形的三条角平分线一定在三角形内部交于一点 D.一个三角形的三条高、中线、角平分线分别交于同一个点 2.如图,AD是△ABC的边BC上的中线,已知AB = 5cm, AC =3cm.△ABD 的面积为a cm2, (1)S△ABC = ______cm2; (2)△ABD与△ACD的周长之差为___cm. 3.在△ABC 中,AD 是∠A 的平分线,DE∥AC 交AB于E,EF∥AD 交BC 于F,试问EF是△BED的角平分线吗?说说你的理由. 第1题让学生作抢答 第2题让学生写出答案,并对第(2)问进行说理. 第(3)题由学生口述证明过程,教师在黑板上写出. 课件展示和笔工具的使用. 使用课件画线及批注功能
布置作业 强化知识 课本 第8页第3、4题; 2.完成练习册本课时的习题. 学生课后完成,教师批改、讲评.