课件23张PPT。2.4 抛物线
2.4.1 抛物线及其标准方程 生活中存在着各种形式的抛物线抛物线的生活实例1.掌握抛物线的定义及标准方程.(重点)
2.能求简单抛物线的方程.(重点、难点) 我们知道,二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,而且研究过它的顶点坐标、对称轴等问题.那么,抛物线到底有怎样的几何性质?它还有哪些几何性质?探究点1 抛物线的定义MHFE思考:如图,点F是定点,l是不经过点F的定直线.H是l上任意一点,经过点H作MH⊥l,线段FH的垂直平分线m交MH于点M.拖动点H,观察点M的轨迹.你能发现点M满足的几何条件吗?m一条经过点F且垂直于l 的直线抛物线的定义: 在平面内,与一个定点F和一条定直线l(l不经过点F) 距离相等的点的轨迹叫做抛物线.|MF|=d焦点d准线点F叫做抛物线的焦点,
直线l 叫做抛物线的准线.想一想:定义中当直线l 经过定点F,则点M的轨迹是什么?······以过点F且垂直于直线 l 的直线为x轴,垂足为K.以FK的中点O为坐标原点建立直角坐标系xOy.KOFMl···(x,y)设M(x,y)是抛物线上任意一点,H点M到l的距离为d.d由抛物线的定义,抛物线就是点的集合探究点2 抛物线的标准方程(p>0),两边平方,整理得KOFMl···(x, y)Hd其中p为正常数,它的几何意义是: 焦点到准线的距离.方程 y2 = 2px(p>0)表示焦点在x轴正半轴上的抛物线. 若抛物线的开口分别朝左、朝上、朝下,你能根据上述办法求出它的标准方程吗?抛物线的标准方程还有哪些不同形式?O准线方程焦点坐标标准方程焦点位置 图
形 四种抛物线及其它们的标准方程 x轴的
正半轴上 x轴的
负半轴上 y轴的
正半轴上 y轴的
负半轴上y2=2px(p>0)y2=-2px (p>0)x2=2py (p>0)x2=-2py (p>0)F(----....(1)若一次项的变量为X(或Y),则焦点就在X轴(或Y轴)上; 如何判断抛物线的焦点位置,开口方向?(2)一次项的系数的正负决定了开口方向 即:焦点与一次项变量有关;正负决定开口方向! 【提升总结】【例1】(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程.
(2)已知抛物线的焦点是F(0,-2),求它的标准方程.解:(1)因为p=3,故抛物线的焦点坐标为 ,
准线方程为(2)因为抛物线的焦点在y轴的负半轴上,且 故所求抛物线的标准方程为x2=-8y.1.根据下列条件写出抛物线的标准方程.
(1)焦点是(0,-3);
(2)准线是 .
2.求下列抛物线的焦点坐标与准线方程.
(1)y=8x2;
(2)x2+8y=0.x2=-12yy2=2x焦点 ,准线焦点 ,准线【提升总结】(1)用待定系数法求抛物线标准方程,应
先确定抛物线的形式,再求p值.(2)求抛物线的
焦点坐标和准线方程要先化成抛物线的标准方程.【变式练习】【例2】一种卫星接收天线的轴截面如图(1)所示.卫
星波束呈近似平行状态射入轴截面为抛物线的接收天
线,经反射聚集到焦点处.已知接收天线的口径(直径)
为4.8m,深度为0.5m,试建立适当的坐标系,求抛物线
的标准方程和焦点坐标.,即p=5.76.解:如图(2),在接收天线的轴截面所在平面内建立直角坐标系,使接收天线的顶点(即抛物线的顶点)与原点重合.设抛物线的标准方程是 所以,所求抛物线的标准方程是 ,焦
点坐标是(2.88,0). 由已知条件可得,点A的坐标是(0.5,2.4),代入方程得(2).FC2.设抛物线y2=8x上一点P到y轴的距离是4,则
点P到该抛物线焦点的距离是( )
A.12 B.4 C.6 D.8 C3.已知动圆M 经过点A(3,0),且与直线l:x=-3相切,求动圆圆心M的轨迹方程.解析:设动点M(x,y),
设圆M与直线l:x=-3的切点为N,
则|MA|=|MN|,即动点M到定点A和定直线l:x=-3
的距离相等,
所以点M的轨迹是抛物线,
且以A(3,0)为焦点,以直线l:x=-3为准线,
所以 =3,所以p=6.
所以圆心M的轨迹方程是y2=12x.平面内与一个定点F的距离和一条定直线l (l不经过点F)的距离相等的点的轨迹叫做抛物线.一个定义:两类问题:三项注意:四种形式:1.求抛物线标准方程;
2.已知方程求焦点坐标和准线方程.1.定义的前提条件:直线l不经过点F;
2.p的几何意义:焦点到准线的距离;
3.标准方程表示的是顶点在原点,对称轴为坐标轴的抛物线.抛物线的标准方程有四种:
y2=2px(p>0),y2=-2px(p>0),
x2=2py(p>0),x2=-2py(p>0). 追赶时间的人,生活就会宠爱他;放弃时间的人,生活就会冷落他.课件25张PPT。2.4.2 抛物线的简单几何性质
第1课时 抛物线的简单几何性质 类比椭圆、双曲线的几何性质,你认为可以讨论抛物线的哪些几何性质?【思考】1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;(重点)
2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;(重点、难点)
3.在对抛物线几何性质的讨论中,注意数与形的结合与转化 . 抛物线有许多重要性质.我们根据抛物线的标准方程研究它的一些简单几何性质.探究点1 抛物线的简单几何性质1.范围 因为p>0,由方程(1)可知,对于抛物线(1)上的点M (x,y),x≥0,所以这条抛物线在y轴的右侧,开口方向与x轴正向相同;
当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.2.对称性 以-y代y,方程(1)不变,所以这条抛物线关于x轴对称. 我们把抛物线的对称轴叫做抛物线的轴.3.顶点 抛物线和它的轴的交点叫做抛物线的顶点.在方程(1)中,当y=0时,x=0,因此抛物线(1)的顶点就是坐标原点.4.离心率 抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.FABy2=2px2p 过焦点而垂直于对称轴的
弦AB,称为抛物线的通径. 利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图.|AB|=2p2p越大,抛物线张口越大.5.通径 连接抛物线上任意一点与焦点的线段叫做抛物线的焦半径.焦半径公式:F6.焦半径y2 = 2px
(p>0)y2 = -2px
(p>0)x2 = 2py
(p>0)x2 = -2py
(p>0)关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称(0,0)e=1抛物线的几何性质(1)抛物线只位于半个坐标平面内,虽然它也可以
无限延伸,但没有渐近线;
(2)抛物线只有一条对称轴,没有对称中心;
(3)抛物线只有一个顶点,一个焦点,一条准线;
(4)抛物线的离心率e是确定的,为1;
(5)抛物线的通径为2p, 2p越大,抛物线的张口越大.【提升总结】解:因为抛物线关于x轴对称,它的顶点在坐标原
点,并且经过点M(2, ),所以,可设它的标
准方程为因为点M在抛物线上,所以因此,所求抛物线的标准方程是 【例1】已知抛物线关于x轴对称,它的顶点为坐标
原点,并且经过点M(2, ),求它的标准方程.即p =2.分析:由抛物线的方程可以得到它的焦点坐标,又直线l的斜率为1,所以可以求出直线l的方程;与抛物线的方程联立,可以求出A,B两点的坐标;利用两点间的距离公式可以求出∣AB|.这种方法虽然思路简单,但是需要复杂的代数运算.下面,我们介绍另外一种方法——数形结合的方法.还可以如何求x1+x2?分析:运用抛物线的定义和平面几何知识来证比较简捷. 如上题,求证:以AB为直径的圆和抛物线的准线相切. 所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.证明:如图,设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足分别为D,H,C,则|AF|=|AD|,|BF|=|BC|∴|AB|
=|AF|+|BF|
=|AD|+|BC|
=2|EH| 2.已知点A(-2,3)与抛物线
的焦点的距离是5,则p = . 43.已知直线x-y=2与抛物线 交于A,B两点,那么线段AB的中点坐标是 .4.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处.已知灯口圆的直径为60 cm,灯深40 cm,建系如图所示,求抛物线的标准方程和焦点位置.(40,30)所在平面内建立直角坐标系,使反射镜的
顶点与原点重合, x轴垂直于灯口直径.解:在探照灯的轴截面设抛物线的标准方程为:y2=2px(p>0),由条件可得A (40,30),代入方程得:302=2p·40解得: p=故所求抛物线的标准方程为: y2= x,焦点为( ,0)抛物线只位于半个坐标平面内,虽然它也
可以无限延伸,但没有渐近线;抛物线只有一条对称轴,没有对称中心;抛物线的离心率是确定的,等于1.抛物线只有一个顶点,一个焦点,一条准线;1. 范围:2. 对称性:3. 顶点:4. 离心率: 目标的坚定是性格中最必要的力量源泉之一,也是成功的利器之一。没有它,天才会在矛盾无定的迷径中徒劳无功.课件26张PPT。第2课时 抛物线方程及性质的应用 y2 = 2px
(p>0)y2 = -2px
(p>0)x2 = 2py
(p>0)x2 = -2py
(p>0)关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称(0,0)e=11.了解抛物线的几何性质,并会应用于实际问
题之中;(重点)
2.会利用抛物线的定义、标准方程、几何性质
及图形四者之间的内在联系,分析和解决实
际问题.(重点、难点)探究点1 抛物线几何性质的基本应用 【例1】过抛物线焦点 F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴. 分析: 我们用坐标法证明,即通过建立抛物线及直线的方程,借助方程研究直线DB与抛物线对称轴之间的位置关系. 建立如图所示的直角坐标系,只要证明点D的纵坐标与点B的纵坐标相等即可. 证明:如图,以抛物线的对称轴为x轴,它的顶点为原点,建立直角坐标系.设抛物线的方程为抛物线的准线方程是联立(2)(3),可得点D的纵坐标为所以,直线DB平行于抛物线的对称轴.由(4)(6)可知,DB∥x轴.联立(1)(5),可得点B的纵坐标为 【例2】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,求这个正三角形的边长.分析:如图,设正三角形OAB的顶点A,B在
抛物线上,且它们的坐标分别为(x1,y1)和(x2,y2),
则 =2px1, =2px2, 本题利用了抛物线与正三角形有公共对称轴这一性质,但往往会直观上承认而忽略了它的证明.【提升总结】故这个正三角形的边长为3.相交(一个交点,两个交点).探究点2 直线与抛物线的位置关系问题1:直线与抛物线有怎样的位置关系?1.相离;2.相切;与双曲线的情况一致把直线方程代入抛物线方程得到一元一次方程得到一元二次方程直线与抛物线的
对称轴平行(重合)相交(一个交点) 计 算 判 别 式问题2:如何判断直线与抛物线的位置关系?y2=4x 分析:用解析法解决这个问题,只要讨论直线l的方程与抛物线的方程组成的方程组的解的情况,由方程组解的情况判断直线l与抛物线的位置关系.①①①①①①【变式练习】1.顶点在原点、坐标轴为对称轴的抛物线,过
点(-1,2),则它的方程是 ( )
A.y=2x2或y2=-4x
B.y2=-4x或x2=2y
C.x2=- y
D.y2=-4x A2.过抛物线y2=8x的焦点,作倾斜角为45°的
直线,则被抛物线截得的弦长为( )
A.8 B.16
C.32 D.61BC 4.抛物线y2=4x上有两个定点A,B分别在对称轴的上下两侧,F为抛物线的焦点,并且|FA|=2,|FB|=5,在抛物线AOB这段曲线上求一点P,使△PAB的面积最大,并求这个最大面积.解析:由已知得F(1,0),不妨设点A在x轴上方且坐标为(x1,y1),
由|FA|=2,得x1+1=2,x1=1, 所以A(1,2),同理B(4,-4),所以直线AB的方程为2x+y-4=0.设在抛物线AOB 这段曲线上任一点P(x0,y0),且0≤x0≤4,-4≤y0≤2.则点P 到直线AB的距离所以△PAB的面积最大值为 直线与抛物线的位置关系
⑴直线与抛物线有三种位置关系:相交、相切、相离.
相交:直线与抛物线交于两个不同点,或直线与抛物
线的对称轴平行(重合);
相切:直线与抛物线有且只有一个公共点,且直线与抛物线的对称轴不平行(重合);
相离:直线与抛物线无公共点.⑵直线与抛物线的位置关系的判断.把直线方程代入抛物线方程得到一元一次方程得到一元二次方程直线与抛物线的
对称轴平行(重合)相交(一个交点) 计 算 判 别 式 坚持把简单的事情做好就是不简单,坚持把平凡的事情做好就是不平凡。所谓成功,就是在平凡中做出不平凡的坚持.