八年级数学上册12.3角的平分线的性质(含同步教案和重难点突破)课件

文档属性

名称 八年级数学上册12.3角的平分线的性质(含同步教案和重难点突破)课件
格式 zip
文件大小 774.8KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2014-12-09 07:50:20

文档简介

课件15张PPT。八年级 上册第十二章 全等三角形
角的平分线的性质 如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗? 创设情境 提出问题  问题1:在练习本上画一个角,怎样得到这个角的
平分线?
用量角器度量,也可用折纸的方法.    你能评价这些方法吗?在生产生活中,这些方法是否可行呢?合作探究 形成知识 下图是一个平分角的仪器,其中AB =AD,BC =DC,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE,AE 就是∠DAB 的平分线.你能说明它的道理吗? 合作探究 形成知识证明:
在△ACD和△ACB中,
AD=AB(已知),
DC=BC(已知),
CA=CA(公共边)
∴ △ACD≌ △ACB(SSS).
∴∠CAD=∠CAB(全等三角形的 对应边相等)
∴AC平分∠DAB(角平分线的定义)
合作探究 形成知识 2.分别以M,N为圆心.大于 MN的长为半径作弧.两弧在∠AOB的内部交于C.如何用尺规作角的平分线?AB 1.以O为圆心,适当长为半径作弧,交OA于M,交OB于N.3.画射线OC.射线OC即为所求. 合作探究 形成知识OC是∠AOB的平分线,点P是射线OC上的任意一点. 1.操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:2.观察测量结果,猜想线段PD与PE的大小关系,写出结论:____________COBAPD=PE角平分线有什么性质呢?合作探究 形成知识 角平分线的性质:角的平分线上的点到角的两边的距离相等. 题设: 已知:OC是∠AOB的平分线,点P在OC上,
PD ⊥OA ,PE ⊥OB,垂足分别是D、E.
求证:PD=PE.一个点在一个角的平分线上.结论:它到角的两边的距离相等.C合作探究 形成知识证明:∵OC平分∠ AOB (已知)
∴ ∠1= ∠2(角平分线的定义)
∵PD ⊥ OA,PE ⊥ OB(已知)
∴ ∠PDO= ∠PEO(垂直的定义)
在△PDO和△PEO中
∠PDO= ∠PEO(已证)
∠1= ∠2 (已证)
OP=OP (公共边)
∴ △PDO ≌ △PEO(AAS)
∴PD=PE(全等三角形的对应边相等) 合作探究 形成知识∵OC是∠AOB的平分线,
∴PD=PE.PD⊥OA,PE⊥OB几何语言:  角平分线的性质:角平分线上的点到角两边的距离相等.合作探究 形成知识 由角的平分线的性质的证明过程,你能概括出证明几何命题的一般步骤吗? 1.明确命题中的已知和求证.
2.根据题意,画出图形,并用数学符号表示已知和
求证.
3.经过分析,找出由已知推出求证的途径,写出证
明过程. 合作探究 形成知识   角的平分线的性质的作用是什么?   主要是用于判断和证明两条线段相等,与以前的方法相比,运用此性质不需要先证两个三角形全等.合作探究 形成知识  在此题的已知条件下,
你还能得到哪些结论?
  如图,△ABC中,∠B =∠C,AD 是∠BAC
的平分线, DE⊥AB,DF⊥AC,垂足分别为E,F.求
证:EB =FC.巩固提高小结反思 1.本节课学习了哪些主要内容?
2.本节课是通过什么方式探究角的平分线的性质的?
3.角的平分线的性质为我们提供了证明什么的方法?在应用这一性质时要注意哪些问题?
再 见《角的平分线的性质》重难点突破
一、探索并证明角的平分线的性质
突破建议:首先将实际问题抽象为数学模型,运用全等三角形的知识解释平分角的仪器的工作原理.然后通过实际测量得到“角的平分线上的点到角的两边的距离相等”,接下来用严密的推理证明得到的结论,让学生经历实践发现、分析概括、推理证明的过程,体会分析几何问题的基本思路.
可参考以下过程设计:
追问2:下图是一个平分角的仪器,其中AB =AD,BC =DC,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE,射线AE 就是∠DAB 的平分线.你能说明它的道理吗?
师生活动:教师启发学生将实际问题抽象为数学模型,并运用全等三角形的知识解释平分角的仪器的工作原理.
追问3:从利用平分角的仪器画角的平分线中,你受到哪些启发?如何利用直尺和圆规作一个角的平分线?
师生活动:师生分别在黑板和练习本上利用直尺和圆规作∠AOB的平分线.教师与学生共同归纳,得出利用尺规作角的平分线的具本方法.
《角的平分线的性质》教学设计
一、内容和内容解析
(一)内容
角的平分线的性质.
(二)内容解析
本节课是在学习了角平分线的概念和全等三角形的基础上进行的,是全等三角形知识的运用和延续.用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角的平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质.角的平分线的性质证明提供了使用角的平分线的一种重要模式──利用角平分线构造两个全等的直角三角形,进而证明相关元素相应相等.
角的平分线的性质反映了角的平分线的基本特征,也是证明两条线段相等的常用方法.数学问题中涉及角的平分线时,就相当于已知一对线段(角的平分线上的点到角的两边的垂线段)相等.角的平分线的性质的研究过程为以后学习线段垂直平分线的性质提供了思路和方法. 因此它既是对前面所学知识的应用,又是为后续学习作铺垫,具有举足轻重的作用.因此本节课在教材中占有非常重要的地位.
基于以上分析,确定本节课的教学重点:探索并证明角的平分线的性质. 
二、目标和目标解析
(一)目标
1.会用尺规作一个角的平分线,知道作法的合理性.
2.探索并证明角的平分线的性质.
3.能用角的平分线的性质解决简单问题.
(二)目标解析
达成目标1的标志是:学生明确尺规作图的基本要求,知道用尺规作角的平分线的方法与原理,能在教师的引导下用尺规作出一个已知角的平分线.
达成目标2的标志是:学生能在教师的引导下通过观察、测量等方法,发现角的平分线的性质,能准确表述性质的内容,能正确地写出已知、求证,能运用三角形全等的“AAS”判定方法和全等三角形的性质证明角的平分线的性质.
达成目标3的标志是:学生能利用角的平分线的性质构造全等三角形,证明与线段相等有关的简单问题.
三、教学问题诊断分析
本节课的学习中,学生在分清角的平分线的性质的条件和结论,并进行严格的逻辑证明的过程中常常感到困难.例如,在用符号语言表述性质的条件和结论时,不知“距离”应为“条件”还是“结论”.其主要原因是角的平分线的性质是以文字命题的形式给出的,其条件和结论具有一定的隐蔽性.教学时,教师要引导学生分析性质中的条件和结论(必要时可让学生将性质改写成“如果……那么……”的形式),找出结论中的隐含条件(垂直),正确写出已知和求证,并归纳出证明几何命题的一般步骤.
基于以上分析,本节课的教学难点是:证明以文字命题形式给出的角的平分线的性质.
四、教学过程设计
(一)创设情景,提出问题
如图是小明制作的风筝,AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?
师生活动:学生根据三角形全等的知识口述其中的道理,从而引入新课.
(二)合作探究,形成知识
问题1: 在练习本上画一个角,怎样得到这个角的平分线?
师生活动:学生可能用量角器,也可能用折纸的方法动手操作,然后回答问题.
追问1:你能评价这些方法吗?在生产生活中,这些方法是否可行呢?
师生活动:学生分析并回答──利用量角器比较方便,但是有误差;利用折叠的方法比较简捷,但是只限于可以折叠的材质,若在木板、钢板等材料上操作,此方法就不可行了.
追问2:下图是一个平分角的仪器,其中AB =AD,BC =DC,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE,射线AE 就是∠DAB 的平分线.你能说明它的道理吗?
师生活动:教师启发学生将实际问题抽象为数学模型,并运用全等三角形的知识解释平分角的仪器的工作原理.
追问3:从利用平分角的仪器画角的平分线中,你受到哪些启发?如何利用直尺和圆规作一个角的平分线?
师生活动:师生分别在黑板和练习本上利用直尺和圆规作∠AOB的平分线.教师与学生共同归纳,得出利用尺规作角的平分线的具本方法.
如果学生没有思路,教师可作如下提示:
1.在用平分角的仪器画角的平分线时,把仪器放在角的两边,仪器的顶点与角的顶点重合,且仪器的两边相等(AB=CD),怎样在作图中体现这个过程呢?
2.在平分角的仪器中,BC=DC,怎样在作图中体现这个过程呢?
追问4:你能说明为什么射线OC是∠AOB的平分线吗?
师生活动:学生用三角形全等进行证明,明确作图的理论依据.
【设计意图】让学生运用全等三角形的知识解释平分角的仪器的工作原理,体会数学的应用价值,同时从中获得启发,用尺规作角的平分线,增强作图技能.最后让学生在简单推理的过程中体会作法的合理性.
问题2 利用尺规我们可以作一个角的平分线,那么角的平分线有什么性质呢?首先思考下面的问题: