概率练习题
知识点、一
要点一、古典概型
满足下列两个特点的概率问题称为古典概型.
一次试验中,可能出现的结果是有限的;
一次试验中,各种结果发生的可能性相等的.
古典概型可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比例分析事件的概率.
要点诠释:如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=.
要点二、用列举法求概率
常用的列举法有两种:列表法和树形图法.
列表法:
当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.
列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.
要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;
(2)列表法适用于涉及两步试验的随机事件发生的概率.
树形图:当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图.
树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.
要点诠释:(1) 树形图法同样适用于各种情况出现的总次数不是很大时,求概率的问题;
(2)在用列表法或树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.
要点三、利用频率估计概率
当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.
要点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.
练习题、二
(1)选择题
1.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A. B. C. D.
2.从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( )
A. B. C. D.
3.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( )
A. B. C. D.
4.如图,小明从A入口进入博物馆参观,参观后可从B,C,D三个出口走出,他恰好从C出口走出的概率是
A.
B.
C.
D.
5.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )
A.至少有1个白球 B.至少有2个白球
C.至少有1个黑球 D.至少有2个黑球
6.“一个不透明的袋中装有三个球,分别标有1,2,x这三个号码,这些球除号码外都相同,搅匀后任意摸出一个球,摸出球上的号码小于5”是必然事件,则x的值可能是( )
A.4 B.5 C.6 D.7
7.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )
A. B. C. D.
8.现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是
A. B. C. D.
9.工厂从三名男工人和两名女工人中,选出两人参加技能大赛,则这两名工人恰好都是男工人的概率为( )
A. B. C. D.
10.在六张卡片上分别写有6,﹣,3.1415,π,0,六个数,从中随机抽取一张,卡片上的数为无理数的概率是( )
A. B. C. D.
11.“成语”是中华文化的瑰宝,是中华文化的微缩景观.下列成语:①“水中捞月”,②“守株待兔”,③“百步穿杨”,④“瓮中捉鳖”描述的事件是不可能事件的是( )
A.① B.② C.③ D.④
12.小明计划到永州市体验民俗文化,想从“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化中任意选择两项,则小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为( )
A. B. C. D.
13. “14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则( )
A. P=0 B. 0<P<1 C. P=1 D. P>1
14.甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.
袋子 糖果 红色 黄色 绿色 总计
甲袋 2颗 2颗 1颗 5颗
乙袋 4颗 2颗 4颗 10颗
若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋( )
A.摸出红色糖果的概率大 B.摸出红色糖果的概率小
C.摸出黄色糖果的概率大 D.摸出黄色糖果的概率小
15.一个不透明的口袋中有4个红球,6个绿球,这些球除颜色外无其他差别,从口袋中随机摸出1个球,则摸到绿球的概率是
A. B. C. D.
16.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是
A. B. C. D.
(2)填空题
1. 在一个不透明的袋中装有大小和质地都相同的5个球:2个白球和3个红球.从中任意取出1个球,取出的球是红球的概率是 ___.
2.有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是 .
3.一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为 .
4.抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是 .
5.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是______.
6.一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是 .
7.一个不透明的口袋中有两个完全相同的小球,把它们分别标号为1,2.随机摸取一个小球后,放回并摇匀,再随机摸取一个小球,两次取出的小球标号的和等于4的概率为 .
8.在一个不透明袋子中,装有3个红球,5个白球和一些黄球,这些球除颜色外无其他差别,从袋中随机摸出一个球是白球的概率为,则袋中黄球的个数为 .
(3)简答题
1.某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.
(1)求嘉淇走到十字道口A向北走的概率;
(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.
2. 为了引导青少年学党史、颂党恩、跟党走,某中学举行了“南献礼建党百年”党史知识竞赛活动.胡老师从全校学生的答卷中随机地抽取了部分学生的答卷进行了统计分析(卷面满分100分,且得分均为不小于60的整数)﹐并将竞赛成绩划分为四个等级:基本合格().合格()、良好()、优秀(),制作了如下统计图(部分信息未给出):
所抽取成绩的条形统计图
所抽取成绩的扇形统计图
根据图中提供的信息解决下列问题:
(1)胡老师共抽取了____________名学生的成绩进行统计分析,扇形统计图中“基本合格”等级对应的扇形圆心角度数为____________﹐请补全条形统计图.
(2)现从“优秀”等级的甲、乙、丙、丁四名学生中任选两人参加全市党史知识竞赛活动,请用画树形图的方法求甲学生被选到的概率.
3.2023年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,各市从语文、数学、英语三个学科中随机抽取一科;第二轮;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.
(1)黄冈在第一轮抽到语文学科的概率是 ;
(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.
4.为庆祝中国共产党建党100周年,某校拟举办主题为“学党史跟党走”的知识竞赛活动.某年级在一班和二班进行了预赛,两个班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其等级对应的分值分别为100分、90分、80分、70分,将这两个班学生的最后等级成绩分析整理绘制成了如图的统计图.
(1)这次预赛中,二班成绩在B等及以上的人数是多少?
(2)分别计算这次预赛中一班成绩的平均数和二班成绩的中位数;
(3)已知一班成绩A等的4人中有两个男生和2个女生,二班成绩A等的都是女生,年级要求从这两个班A等的学生中随机选2人参加学校比赛,若每个学生被抽取的可能性相等,求抽取的2人中至少有1个男生的概率.
5.疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教育部门随机抽取了该市部分七、八、九年级教师,了解教师的疫苗接种情况,得到如下统计表:
已接种 未接种 合计
七年级 30 10 40
八年级 35 15 a
九年级 40 b 60
合计 105 c 150
(1)表中,a= ,b= ,c= ;
(2)由表中数据可知,统计的教师中接种率最高的是 年级教师;(填“七”或“八”或“九”)
(3)若该市初中七、八、九年级一共约有8000名教师,根据抽样结果估计未接种的教师约有 人;
(4)为更好地响应号召,立德中学从最初接种的4名教师(其中七年级1名,八年级1名,九年级2名)中随机选取2名教师谈谈接种的感受,请用列表或画树状图的方法,求选中的两名教师恰好不在同一年级的概率.
6.在一个不透明的口袋中装有三个小球,分别标记数字1、2、3,每个小球除数字不同外其余均相同.小明和小亮玩摸球游戏,两人各摸一个球,谁摸到的数字大谁获胜,摸到相同数字记为平局.小明从口袋中摸出一个小球记下数字后放回并搅匀,小亮再从口袋中摸出一个小球.用画树状图(或列表)的方法,求小明获胜的概率.
7.将4张分别写有数字1、2、3、4的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率.(请用“画树状图”或“列表”等方法写出分析过程)
(1)取出的2张卡片数字相同;
(2)取出的2张卡片中,至少有1张卡片的数字为“3”.
8.为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.
(1)“A志愿者被选中”是 事件(填“随机”或“不可能”或“必然”);
(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出A,B两名志愿者被选中的概率.
答案、(1)选择题
1.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.
【解答】解:画“树形图”如图所示:
∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,
∴一辆向右转,一辆向左转的概率为;
故选:B.
2.C 【解析】根据题意画图如下:
共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,
则恰好抽到马鸣和杨豪的概率是;故选:C.
3.【分析】画树状图,共有12种等可能的结果,恰好抽到2名女学生的结果有6种,再由概率公式求解即可.
【解答】解:画树状图如图:
共有12种等可能的结果,恰好抽到2名女学生的结果有6种,
∴恰好抽到2名女学生的概率为=,
故选:B.
4.【答案】B
【解析】解:画树状图如下:
由树状图知,共有6种等可能结果,其中从C出口出来的有2种结果,
所以恰好在C出口出来的概率为,
故选:B.
画树状图,共有6种等可能结果,其中从C出口出来的有2种结果,再由概率公式求解即可.
此题考查的是列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
5.【分析】根据必然事件、不可能事件、随机事件的概念分别进解答即可得出答案.
【解答】解:至少有1个球是白球是必然事件,故本选项符合题意;
至少有2个球是白球是随机事件,故本选项不符合题意;
至少有1个球是黑球是随机事件,故本选项不符合题意;
至少有2个球是黑球是随机事件,故本选项不符合题意;
故选:A.
6.【分析】根据必然事件的意义,进行解答即可.
【解答】解:根据题意可得,x的值可能为4.如果是5、7、6,那么与摸出球上的号码小于5”是必然事件相违背.
故选:A.
7.【分析】
用树状图表示所有等可能的结果,再求得甲和乙从同一节车厢上车的概率.
【详解】
解:将3节车厢分别记为1号车厢,2号车厢,3号车厢,用树状图表示所有等可能的结果,
共有9种等可能的结果,其中,甲和乙从同一节车厢上车的有3可能,
即甲和乙从同一节车厢上车的概率是,
故选:C.
【点睛】
本题考查概率,涉及画树状图求概率,是重要考点,难度较易,掌握相关知识是解题关键.
8.【答案】A
【解析】解:把4张卡片分别记为:A、B、C、D,
画树状图如图:
共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,
两张卡片正面图案恰好是“天问”和“九章”的概率为,
故选:A.
画树状图,共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,再由概率公式求解即可.
此题考查的是列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
9.【分析】画树状图,共有20种等可能的结果,这两名工人恰好都是男工人的结果有6种,再由概率公式求解即可.
【解答】解:画树状图如图:
共有20种等可能的结果,这两名工人恰好都是男工人的结果有6种,
∴这两名工人恰好都是男工人的概率为=,
故选:C.
10.【分析】先找出无理数,再利用概率公式求解即可求得答案.
【解答】解:∵六张卡片上分别写有6,﹣,3.1415,π,0,六个数,无理数的是π,,
∴从中任意抽取一张卡片上的数为无理数的概率是:=.
故选:C.
11.【解答】解:①“水中捞月”是不可能事件,符合题意;
②“守株待兔”是随机事件,不合题意;
③“百步穿杨”,是随机事件,不合题意;
④“瓮中捉鳖”是必然事件,不合题意;
故选:A.
12.【分析】画树状图,共有12种等可能的结果,小明选择体验“瑶族长鼓舞、舜帝祭典”的结果有2种,再由概率公式求解即可.
【解答】解:把“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化分别记为:A、B、C、D,
画树状图如图:
共有12种等可能的结果,小明选择体验“瑶族长鼓舞、舜帝祭典”的结果有2种,
∴小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为=,
故选:D.
13.【答案】C
【解析】
【分析】根据不可能事件的概率为,随机事件的概率大于而小于,必然事件的概率为1,即可判断.
【详解】解:∵一年有12个月,14个人中有12个人在不同的月份过生日,剩下的两人不论哪个月生日,都和前12人中的一个人同一个月过生日
∴“14人中至少有2人在同一个月过生日”是必然事件,
即这一事件发生的概率为.
故选:.
【点睛】本题考查了概率的初步认识,确定此事件为必然事件是解题的关键.
14.C
【分析】
分别对甲乙两个袋子的红色及黄色的糖果的概率进行计算,再去比较即可.
【详解】
解:P(甲袋摸出红色糖果),
P(甲袋摸出黄色糖果),
P(乙袋摸出红色糖果),
P(乙袋摸出黄色糖果),
∴P(甲袋摸出红色糖果)=P(乙袋摸出红色糖果),故A,B错误;
P(甲袋摸出黄色糖果)>P(乙袋摸出黄色糖果),故D错误,C正确.
故选:C.
【点睛】
本题主要考查了简单概率的计算,掌握概率公式并能灵活掌握是解题关键.
15.【解答】解:袋中装有4个红球,6个绿球,
共有10个球,
摸到绿球的概率为:;
故选:.
16.【解答】解:画树状图如图:
,
共有6个等可能的结果,恰好取到红色帽子和红色围巾的结果有1个,
恰好取到红色帽子和红色围巾的概率为,
故选:.
(2)填空题
1.【答案】
【解析】
【分析】根据概率公式即可求解.
【详解】2个白球和3个红球.从中任意取出1个球,取出的球是红球的概率是
故答案为:.
2.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
【解答】解:由题意得,
共有2×4=8种等可能情况,其中能打开锁的情况有2种,
故一次打开锁的概率为=,
故答案为:.
3.【分析】用白球的个数除以球的总个数即可.
【解答】解:∵从袋子中随机摸出一个小球共有5种等可能结果,摸出的小球是白球的结果数为3,
∴摸出的小球是红球的概率为,
故答案为:.
4.【分析】画树状图展示所有4种等可能的结果数,再找出两次都是“正面朝上”的结果数,然后根据概率公式求解.
【解答】解:画树状图如下:
共有4种等可能的结果数,其中两次都是“正面朝上”的结果有1种,
∴两次都是“正面朝上”的概率=.
故答案为:.
5.【分析】
先判断黑色区域的面积,再利用概率公式计算即可
【详解】
解:因为正方形的两条对角线将正方形分成面积相等的四个三角形,即四个黑色三角形的面积等于一个小正方形的面积,所以黑色区域的面积为2个小正方形的面积,而共有9个小正方形则有小球停留在黑色区域的概率是
故答案为:
6.【解答】解:由图可知:黑色区域在整个地面中所占的比值,
小球最终停留在黑色区域的概率,
故答案为:.
7.【解答】解:画树状图如图:
共有4种等可能的结果,两次取出的小球标号的和等于4的结果有1种,
两次取出的小球标号的和等于4的概率为,
故答案为:.
8.【解答】解:设有黄球个,
根据题意得:,
解得:,
经检验是原方程的解,
故答案为:7.
(3)简答题
1.【分析】(1)直接由概率公式求解即可;
(2)补全树状图,共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,由概率公式求解即可.
【解答】解:(1)嘉淇走到十字道口A向北走的概率为;
(2)补全树状图如下:
共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,
∴向西参观的概率为=,向南参观的概率=向北参观的概率=向东参观的概率=,
∴向西参观的概率大.
2.【答案】(1)40,;(2)
3.【分析】(1)直接根据概率公式求解即可;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【解答】解:(1)黄冈在第一轮抽到语文学科的概率是,
故答案为:;
(2)列表如下:
物理 化学 历史
道法 (物理,道法) (化学,道法) (历史,道法)
地理 (物理,地理) (化学,地理) (历史,地理)
生物 (物理,生物) (化学,生物) (历史,生物)
由表可知共有9种等可能结果,其中抽到的学科恰好是历史和地理的只有2种结果,
所以抽到的学科恰好是历史和地理的概率为.
4.【分析】(1)由条形图得出一班比赛的人数为20人,则二班参赛人数为20人,即可解决问题;
(2)由加权平均数定义和中位数定义分别求解即可;
(3)画树状图,共有30种等可能的结果,抽取的2人中至少有1个男生的结果有18种,再由概率公式求解即可.
【解答】解:(1)由条形图可知,一班比赛的人数为:4+9+5+2=20(人),
∵两个班参加比赛的人数相同,
∴二班参赛人数为20人,
∴这次预赛中,二班成绩在B等及以上的人数为:20×10%+20×35%=9(人);
(2)一班成绩的平均数为:(100×4+90×9+80×5+70×2)=87.5(分),
由题意得:二班成绩的中位数为80分;
(3)∵二班成绩A等的都是女生,
∴二班成绩A等的人数为:20×10%=2(人),
把一班成绩A等的2个男生分别记为A、B,其他成绩A等的4个女生分别记为C、D、E、F,
画树状图如图:
共有30种等可能的结果,抽取的2人中至少有1个男生的结果有18种,
∴抽取的2人中至少有1个男生的概率为=.
5.【分析】(1)由统计表中的数据求解即可;
(2)分别求出七、八、九年级教师的接种率,即可得出结论;
(3)由该市初中七、八、九年级共有的人数乘以未接种的教师所占的比例即可;
(4)画树状图,共有12种等可能的结果,选中的两名教师恰好不在同一年级的结果有10种,再由概率公式求解即可.
【解答】解:(1)a=35+15=50,b=60﹣40=20,c=10+15+20=45,
故答案为:50,20,45;
(2)七年级教师的接种率为:30÷40=0.75,八年级教师的接种率为:35÷50=0.7,九年级教师的接种率为:40÷60≈0.67,
∵0.75>0.7>0.67,
∴统计的教师中接种率最高的是七年级教师,
故答案为:七;
(3)根据抽样结果估计未接种的教师约有:8000×=2400(人),
故答案为:2400;
(4)把七年级1名教师记为A,八年级1名教师记为B,九年级2名教师记为C、D,
画树状图如图:
共有12种等可能的结果,选中的两名教师恰好不在同一年级的结果有10种,
∴选中的两名教师恰好不在同一年级的概率为=.
6.【分析】画树状图,共有9种等可能的结果,小明获胜的结果有3种,再由概率公式求解即可.
【解答】解:画树状图如图:
共有9种等可能的结果,小明获胜的结果有3种,
∴小明获胜的概率为=.
7.【解答】解:(1)画树状图如图:
共有16种等可能的结果,取出的2张卡片数字相同的结果有4种,
∴取出的2张卡片数字相同的概率为=;
(2)由(1)可知,共有16种等可能的结果,取出的2张卡片中,至少有1张卡片的数字为“3”的结果有7种,
∴取出的2张卡片中,至少有1张卡片的数字为“3”的概率为.
8.【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;
(2)列表得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可.
【解答】解:(1)“A志愿者被选中”是随机事件,
故答案为:随机;
(2)列表如下:
A B C D
A ﹣﹣﹣ (B,A) (C,A) (D,A)
B (A,B) ﹣﹣﹣ (C,B) (D,B)
C (A,C) (B,C) ﹣﹣﹣ (D,C)
D (A,D) (B,D) (C,D) ﹣﹣﹣
由表可知,共有12种等可能结果,其中A,B两名志愿者被选中的有2种结果,
所以A,B两名志愿者被选中的概率为=.