用树状图或表格求概率 同步练习
一、填空题:
用列表的方法求下列各事件发生的概率,并用所得的结果填空.
1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;
2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;
3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .
4.三个袋中各装有个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有个黄球和一个红球的概率为_________.
5.已知函数,令,,,,,,,,,,可得函数图象上的十个点.在这十个点中随机取两个点,,则两点在同一反比例函数图象上的概率是___________.
二、选择题:
1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率为( )
A. B. C. D.
2.同时掷两颗均匀的骰子,下列说法中正确的是( ).
(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;
(2)“两颗的点数相同”的概率是;
(3)“两颗的点数都是1”的概率最大;
(4)“两颗的点数之和为奇数”与 “两颗的点数之和为偶数”的概率相同.
A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4)
三、解答题:
1.有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.
2.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘转出了红色,转盘转出了蓝色,或者转盘转出了蓝色,转盘转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)此游戏的规则,对小明、小芳公平吗?试说明理由.
红
蓝
红
黄
转盘A
红
蓝
黄
转盘B用树状图或表格求概率 同步练习
【基础练习】
一、填空题:
用列表的方法求下列各事件发生的概率,并用所得的结果填空.
1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;
2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;
3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .
二、选择题:
同时掷两颗均匀的骰子,下列说法中正确的是( ).
(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;
(2)“两颗的点数相同”的概率是;
(3)“两颗的点数都是1”的概率最大;
(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同.
A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4)
三、解答题:
有两组卡片,第一组卡片共 ( http: / / www.21cnjy.com )3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.
【综合练习】
有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:
(1)共能组成多少种不同的计分?
(2)底面上的数字之和为素数的概率是多少?
(3)底面上的数字之和为偶数的概率是多少?
【探究练习】
中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.
练习二
【基础练习】一、1. ; 2. ; 3. . 二、D. 三、.
【综合练习】(1)7;(2);(3).
【探究练习】.