【精品解析】2018-2019学年初中数学人教版八年级下册 16.2.1二次根式的乘法同步练习

文档属性

名称 【精品解析】2018-2019学年初中数学人教版八年级下册 16.2.1二次根式的乘法同步练习
格式 zip
文件大小 79.2KB
资源类型 试卷
版本资源
科目 数学
更新时间 2019-04-14 21:01:53

文档简介

2018-2019学年初中数学人教版八年级下册 16.2.1二次根式的乘法同步练习
一、基础达标
1.下列等式一定成立的是(  )
A. - = B. × =
C. =±3 D.- =9
【答案】B
【知识点】二次根式的乘除法
【解析】【解答】解:A选项,原式=3-2=1,选项错误,不符合题意;
B选项,原式=,选项正确,符合题意;
C选项,原式=3,选项错误,不符合题意;
D选项,-92<0,不符合二次根式定义,选项错误,不符合题意。
故答案为:B。
【分析】根据二次根式的性质以及二次根式的加减法和乘除法进行计算即可。
2.下列各式化简后的结果为3 的是(  )
A. B. C. D.
【答案】C
【知识点】二次根式的性质与化简
【解析】【解答】A、 不能化简,不符合题意;
B、 =2 ,不符合题意;
C、 =3 ,符合题意;
D、 =6,不符合题意;
故答案为:C.
【分析】根据二次根式的性质逐一化简即可。
3.|1- |=(  )
A.1- B. -1 C.1+ D.-1-
【答案】B
【知识点】实数的绝对值
【解析】【解答】解:∵>1
∴1-<0
∴原式=-1
故答案为:B。
【分析】根据题意确定1-的大小,再化简绝对值即可。
4.计算 × + 的结果为(  )
A.-1 B.1 C.4-3 D.7
【答案】B
【知识点】二次根式的混合运算
【解析】【解答】解:原式=2+(-3)=1。
故答案为:B。
【分析】将二次根式化简为最简二次根式,根据二次根式的乘除法进行计算即可。
5.化简二次根式 的结果为(  )
A.-5 B.5 C.±5 D.
【答案】B
【知识点】二次根式的乘除法
【解析】【解答】解:原式==5。
故答案为:B。
【分析】将被开方数进行化简,继而化简二次根式即可。
6.把-2 根号外面的数移到根号里面,得(  )
A.- B. C.- D.-
【答案】C
【知识点】二次根式的性质与化简
【解析】【解答】解:原式=-=-。
故答案为:C。
【分析】将根号外面的数进行移动时,负号不变,将数字平方后移动到根号里面。
7.(2018·镇江)计算: =   .
【答案】2
【知识点】二次根式的乘除法
【解析】【解答】
=
=2,
故答案为:2.
【分析】二次根式的乘法,根指数不变,把被开方数相乘,再根据二次根式的性质化简即可。
8.若长方形的宽为3 cm,长为2 cm,则长方形的面积为     cm2.
【答案】
【知识点】二次根式的乘除法
【解析】【解答】解:根据题意可知,长方形面积=32
=6
=615
=90。
故答案为:90。
【分析】根据长方形的面积公式进行列式,运用二次根式乘除法的有关知识进行计算即可。
9.
(1)若 ,则x的取值范围是   ;
(2)若 = · ,则x的取值范围是   .
【答案】(1)x≥1
(2)- ≤x≤2
【知识点】二次根式的乘除法
【解析】【分析】根据二次根式的性质可知,二次根式的被开方数大于等于0,即可得出关于x的不等式组,求出x的取值范围即可。
10.比较大小:3    4 .
【答案】<
【知识点】无理数的大小比较
【解析】【解答】解:3=,4=;
∵<
∴3<4
故答案为:<。
【分析】将根号外面的数平方后移动到根号内,比较被开方数的大小即可比较二次根式的大小。
11.计算:
(1) × ;
(2) × ;
(3) · .
【答案】(1)解:原式===9
(2)解:原式===4
(3)解:原式==4a
【知识点】二次根式的乘除法
【解析】【分析】根据二次根式的乘法进行计算即可,各因式算术平方根的积,等于这两个因式积的算术平方根。
12.化简:
(1) ;
(2) ;
(3) ;
(4) ;
(5) (a≥0,b≥0);
(6) × .
【答案】(1)解:原式==7×11=77
(2)解:原式==5×13=65
(3)解:原式==7×0.4=2.8
(4)解:原式==2
(5)解:原式==2ab
(6)解:原式=0.2×3×0.8×2×9=8.64
【知识点】二次根式的乘除法
【解析】【分析】根据二次根式的乘法进行计算即可,因式积的算术平方根等于各因式算术平方根的积。
二、能力提升
13.计算:
(1)
(2) × × ;
(3) ×2 × .
【答案】(1)解:原式=-=-24
(2)解:原式==2
(3)解:原式=-=-4
【知识点】二次根式的乘除法
【解析】【分析】根据二次根式的乘法进行计算即可,各因式算术平方根的积等于各因式积的算术平方根。
14.如图所示是工人师傅做的一块三角形铁板材料,BC边的长为2 cm,BC边上的高AD为 cm,求该三角形铁板的面积.
【答案】解:解:根据题意可知,S△ABC=BCAD
=2
=
=14
故三角形铁板的面积为14 cm2
【知识点】二次根式的乘除法
【解析】【分析】根据三角形的面积公式列式,运用二次根式乘法的相关知识进行作答即可。
三、拓展创新
15.已知b>0,化简 的结果是(  )
A. B.- C. D.
【答案】C
【知识点】二次根式的乘除法
【解析】【解答】解:根据题意可知,b>0,-a3b≥0
∴-a3≥0
∴a≤0
∴原式=-a。
故答案为:C。
【分析】根据二次根式有意义的条件可以求得a的取值范围,根据二次根式的性质进行化简即可。
16.把( -2) 根号外的因式移到根号内后,其结果是   .
【答案】-
【知识点】二次根式的乘除法
【解析】【解答】解:根据题意可知,2-a>0
∴a<2
∴原式=-。
故答案为:-。
【分析】根据二次函数有意义的条件,即可得到a的取值范围,根据二次根式的性质将根号外的因式移动即可。
1 / 12018-2019学年初中数学人教版八年级下册 16.2.1二次根式的乘法同步练习
一、基础达标
1.下列等式一定成立的是(  )
A. - = B. × =
C. =±3 D.- =9
2.下列各式化简后的结果为3 的是(  )
A. B. C. D.
3.|1- |=(  )
A.1- B. -1 C.1+ D.-1-
4.计算 × + 的结果为(  )
A.-1 B.1 C.4-3 D.7
5.化简二次根式 的结果为(  )
A.-5 B.5 C.±5 D.
6.把-2 根号外面的数移到根号里面,得(  )
A.- B. C.- D.-
7.(2018·镇江)计算: =   .
8.若长方形的宽为3 cm,长为2 cm,则长方形的面积为     cm2.
9.
(1)若 ,则x的取值范围是   ;
(2)若 = · ,则x的取值范围是   .
10.比较大小:3    4 .
11.计算:
(1) × ;
(2) × ;
(3) · .
12.化简:
(1) ;
(2) ;
(3) ;
(4) ;
(5) (a≥0,b≥0);
(6) × .
二、能力提升
13.计算:
(1)
(2) × × ;
(3) ×2 × .
14.如图所示是工人师傅做的一块三角形铁板材料,BC边的长为2 cm,BC边上的高AD为 cm,求该三角形铁板的面积.
三、拓展创新
15.已知b>0,化简 的结果是(  )
A. B.- C. D.
16.把( -2) 根号外的因式移到根号内后,其结果是   .
答案解析部分
1.【答案】B
【知识点】二次根式的乘除法
【解析】【解答】解:A选项,原式=3-2=1,选项错误,不符合题意;
B选项,原式=,选项正确,符合题意;
C选项,原式=3,选项错误,不符合题意;
D选项,-92<0,不符合二次根式定义,选项错误,不符合题意。
故答案为:B。
【分析】根据二次根式的性质以及二次根式的加减法和乘除法进行计算即可。
2.【答案】C
【知识点】二次根式的性质与化简
【解析】【解答】A、 不能化简,不符合题意;
B、 =2 ,不符合题意;
C、 =3 ,符合题意;
D、 =6,不符合题意;
故答案为:C.
【分析】根据二次根式的性质逐一化简即可。
3.【答案】B
【知识点】实数的绝对值
【解析】【解答】解:∵>1
∴1-<0
∴原式=-1
故答案为:B。
【分析】根据题意确定1-的大小,再化简绝对值即可。
4.【答案】B
【知识点】二次根式的混合运算
【解析】【解答】解:原式=2+(-3)=1。
故答案为:B。
【分析】将二次根式化简为最简二次根式,根据二次根式的乘除法进行计算即可。
5.【答案】B
【知识点】二次根式的乘除法
【解析】【解答】解:原式==5。
故答案为:B。
【分析】将被开方数进行化简,继而化简二次根式即可。
6.【答案】C
【知识点】二次根式的性质与化简
【解析】【解答】解:原式=-=-。
故答案为:C。
【分析】将根号外面的数进行移动时,负号不变,将数字平方后移动到根号里面。
7.【答案】2
【知识点】二次根式的乘除法
【解析】【解答】
=
=2,
故答案为:2.
【分析】二次根式的乘法,根指数不变,把被开方数相乘,再根据二次根式的性质化简即可。
8.【答案】
【知识点】二次根式的乘除法
【解析】【解答】解:根据题意可知,长方形面积=32
=6
=615
=90。
故答案为:90。
【分析】根据长方形的面积公式进行列式,运用二次根式乘除法的有关知识进行计算即可。
9.【答案】(1)x≥1
(2)- ≤x≤2
【知识点】二次根式的乘除法
【解析】【分析】根据二次根式的性质可知,二次根式的被开方数大于等于0,即可得出关于x的不等式组,求出x的取值范围即可。
10.【答案】<
【知识点】无理数的大小比较
【解析】【解答】解:3=,4=;
∵<
∴3<4
故答案为:<。
【分析】将根号外面的数平方后移动到根号内,比较被开方数的大小即可比较二次根式的大小。
11.【答案】(1)解:原式===9
(2)解:原式===4
(3)解:原式==4a
【知识点】二次根式的乘除法
【解析】【分析】根据二次根式的乘法进行计算即可,各因式算术平方根的积,等于这两个因式积的算术平方根。
12.【答案】(1)解:原式==7×11=77
(2)解:原式==5×13=65
(3)解:原式==7×0.4=2.8
(4)解:原式==2
(5)解:原式==2ab
(6)解:原式=0.2×3×0.8×2×9=8.64
【知识点】二次根式的乘除法
【解析】【分析】根据二次根式的乘法进行计算即可,因式积的算术平方根等于各因式算术平方根的积。
13.【答案】(1)解:原式=-=-24
(2)解:原式==2
(3)解:原式=-=-4
【知识点】二次根式的乘除法
【解析】【分析】根据二次根式的乘法进行计算即可,各因式算术平方根的积等于各因式积的算术平方根。
14.【答案】解:解:根据题意可知,S△ABC=BCAD
=2
=
=14
故三角形铁板的面积为14 cm2
【知识点】二次根式的乘除法
【解析】【分析】根据三角形的面积公式列式,运用二次根式乘法的相关知识进行作答即可。
15.【答案】C
【知识点】二次根式的乘除法
【解析】【解答】解:根据题意可知,b>0,-a3b≥0
∴-a3≥0
∴a≤0
∴原式=-a。
故答案为:C。
【分析】根据二次根式有意义的条件可以求得a的取值范围,根据二次根式的性质进行化简即可。
16.【答案】-
【知识点】二次根式的乘除法
【解析】【解答】解:根据题意可知,2-a>0
∴a<2
∴原式=-。
故答案为:-。
【分析】根据二次函数有意义的条件,即可得到a的取值范围,根据二次根式的性质将根号外的因式移动即可。
1 / 1